

GRG AC status

Hugues Capdeville (CLS), Jean-Michel Lemoine (CNES), Adrien Mezerette (CLS)

CNES/CLS AC (GRG)

Status of CNES/CLS IDS Analysis Center

□ Status of the routine DORIS data processing

We processed DORIS data until Dec. 2023 (Serie GRG54) and provided to IDS Combination Center.

SAA mitigation strategy on Sentinel-6A and HY-2C

we use cnes_grgs_rl05 gravity model

we use DPOD2020 as apriori

the solutions HY-2C & 2D do not contribute to the scale determination of multi-satellite solution We also provided Sentinel3-A&B and Sentinel-6A orbits to CPOD QWG until April 2024.

□ AC studies

In progress:

. . .

Finalyze the introduction of the SWOT satellite in our processing chain Develop a strategy to mitigate the impact of increased solar activity on POD (test recent atmospheric density models, adjust more drag coefficient (from 1/4H to 1/1H)) Determination of quaternions (BUS+solar panel) files for HY-2C and HY-2D satellites in ORBEX format Implementation of the second order ionospheric correction for DORIS measurement

Latest additions:

Macromodel available at: <u>https://ids-doris.org/documents/BC/satellites/DORISSatelliteModels.pdf</u> Attitude:

Quaternions

Nominal attitude now implemented

We have estimated the Radiation pressure scale coefficient: 0,98.

• First results:

We processed SWOT DORIS data from January 2023 to April 2024.

POD results

orbit residuals and OPR empirical acceleration amplitudes comparisons to the CNES POD team orbit POE-F

Evaluation of SWOT single satellite solution by comparison to DPOD2020

DORIS RMS of fit

- **SWOT** (from Jan. 2023 to Apr. 2024)
- Sentinel-3A & 6A (from Jan. 2022 to April. 2024)

- The DORIS RMS residuals for SWOT and Sentinel-3A are at the same level.
- There are more peaks (maneuvers).

OPR Acceleration Amplitude (along-track)

As for Sentinel-3A, for SWOT, the level of the OPR amplitude is correct for the two directions, Along-track and Cross-track.
 For Sentinel-3A, there is a degradation in the along-track amplitude from early 2023 (as the solar flux increases).

Comparison to external orbit POE-F

Weekly Average and RMS orbit differences (in cm)

For SWOT, there is a good agreement between GRG orbit and CNES orbit (< 1cm RMS), except for a few weeks.
For Sentinel-6, there is a 59 days periodic signal in the radial component with POE-F orbit. Probably due to the use of a different solar radiation pressure model (direct solar).

Comparison of each solution to DPOD2020 (computed by CATREF)

SATELLITE	(degree)	Altitude (km)
Cryosat-2	92	717
Saral	98.65	750
Jason-3	66.04	1336
Sentinel-3A	98.65	814
Sentinel-3B	98.65	814
Sentinel-6	66.04	1336
HY-2C	66	971
HY-2D	66	971
SWOT	77	891

Scale Factor from single satellite solutions

- In purple: Multi-satellite solution wo SWOT in which HY-2C and HY-2D solutions do not contribute to the scale.
- In dark green: the SWOT scale is slightly highest than the others except HY satellites.

CLS

Origin and scale from single satellite solutions

Comparison of each solution to DPOD2020 (computed by CATREF)

SATELLITE	(degree)	(km)
Cryosat-2	92	717
Saral	98.65	750
Jason-3	66.04	1336
Sentinel-3A	98.65	814
Sentinel-3B	98.65	814
Sentinel-6	66.04	1336
HY-2C	66	971
HY-2D	66	971
SWOT	77	891

Inclination Altitude

Tx from single satellite solutions

- There is a good agreement between the single satellite solutions.
- The TX for SWOT in dark green is at the same level as the others but the discrepancy is higher.

CLS

Comparison of each solution to DPOD2020 (computed by CATREF)

SATELLITE	(degree)	(km)
Cryosat-2	92	717
Saral	98.65	750
Jason-3	66.04	1336
Sentinel-3A	98.65	814
Sentinel-3B	98.65	814
Sentinel-6	66.04	1336
HY-2C	66	971
HY-2D	66	971
SWOT	77	891

Ty from single satellite solutions

- The multi-satellite TY is stable.
- There is a good agreement between the single satellite solutions.
- The TY for SWOT in dark green is at the same level as the others but the discrepancy is higher.

Comparison of each solution to DPOD2020 (computed by CATREF)

SATELLITE	Inclination (degree)	Altitude (km)
Cryosat-2	92	717
Saral	98.65	750
Jason-3	66.04	1336
Sentinel-3A	98.65	814
Sentinel-3B	98.65	814
Sentinel-6	66.04	1336
HY-2C	66	971
HY-2D	66	971
SWOT	77	891

Tz from single satellite solutions

 The TZ for SWOT in dark green is at the same level as the others but the discrepancy is higher.

CLS

Future work

. . .

- Evaluation of DPOD2020 version 3 with annual and semi-annual terms
- Continue to analyze Origin and Scale factor from single satellite solutions
- We plan to continue the evaluation of GRG orbits:

by comparisons to internal orbits with GNSS by comparison to external orbits by Independent SLR RMS of fit by Altimeter crossover Cycles

- Develop a strategy to mitigate the impact of the increased solar activity
- Finalize the introduction of SWOT in our processing chain
- Contribution to the IDS Working Group: Determination of geocenter motion from DORIS measurements Sentinel clock corrections
- Finalize the implementation of the second order ionospheric correction for DORIS measurement.

