Update of the HY-2A SRP model

Clément Masson, Alexandre Couhert, Flavien Mercier, Hanane Aït-Lakbir, John Moyard

Outline

General information

.

.

- Estimation of the SRP coefficient
- Estimation of the GPS phase center
 - Estimation of the DORIS phase center

General information

- DORIS-only and GPS-only orbits (with fixed ambiguities)
- 3-year period : January 2016 to November 2018 (arc 225 to 373)
- Estimation of SRP coefficient with GPS orbits
- Estimation of GPS and DORIS COP with new SRP coefficient

GPS Ambiguity fixing

- Method similar to Jason 3 and Sentinel-3
- Very good behavior of the GPS receiver
- Most days > 98 %
- Measurement gaps or errors in RINEX files

4) © cnes

Estimation of the SRP coefficient

- Estimation on GPS-only dynamic orbits with fixed ambiguities
- Best results during eclipses
- Odd behavior around high β'
- New value : 0.88

Estimation of the GPS phase center with the new SRP coefficient

- Daily reduced-dynamic GPS-only orbits computed for ambiguity fixing
- No change on the Z direction (radial) with the new SRP
- Initial COP position : (0.349, -0.165, -1.315) m
- Very small and stable bias (-2 mm)

Estimation of the GPS phase center with the new SRP coefficient

- Y direction shifted by 5 mm
- Strong β' signal still present
- Initial COP position : (0.349, -0.165, -1.315) m
- Bias on entire period :
 -1mm → +7 mm
- Bias during eclipses :

-8mm → -2mm

Estimation of the DORIS phase center with the new SRP coefficient

- Dynamic DORIS-only orbits
- Initial COP position : (0.850, -0.750, 1.010) m
- Radial direction : no change
- Median : -11 mm
- -45mm seen on previous study with DPOD2008
- +20mm offset in 2017→ current IDS documentation value
- + DPOD update

Estimation of the DORIS phase center with the new SRP coefficient

- Initial COP position : (0.850, -0.750, 1.010) m
- Entire period :
 - -7.3 mm → -15.4 mm
- On eclipses only :
 -2mm → -8mm
- β' signal

 β' angle (degrees)

Empirical accelerations on GPS orbits

- Accelerations as a function of β'
- Origin shifted to subsolar latitude
- **Tangential sine strongly** changes with β ', corrected by new SRP coefficient
- Odd behavior of the normal acceleration : bias, 🤻 drift + not a function of β '

Empirical accelerations

- Jump at β'=90°
- Behavior seen on 3 years
- Attitude change?

Conclusions

- New SRP coefficient removes tangential acceleration dependency to β'
- COP bias and β' signal in the normal direction for GPS and DORIS
- Strange behavior of empirical accelerations in the normal direction at β'=90°
- Better estimates of SRP coefficient and more reliable estimates of COP (DORIS and GPS) in the normal direction possible once this behavior is explained
- DORIS COP values :

	Current	Updated
X (Tan)	0.850	0.850
Y (Nor)	-0.750	-0.742 (+8 mm) ?
Z (Rad)	1.010	1.021 (+11 mm)

GPS COP values :

	Current	Updated
X (Tan)	0.349	0.349
Y (Nor)	-0.165	-0.167 (-2 mm) ?
Z (Rad)	-1.315	-1.317 (-2 mm)

