Working Group proposal on the "observation of geocenter motion"

A. Couhert^{1,*}

¹ Centre National d'Etudes Spatiales, Toulouse, France

*Mail : alexandre.couhert@cnes.fr

IDS AWG Meeting Munich, Germany April 4, 2019

- The space-geodetic observation of geocenter motion is still in its infancy
 - Independent solutions have systematic differences as large as the signal level
- The ITRF origin is only sensed by SLR observations of the LAGEOS-1 and 2 satellites
 - > There are other techniques than SLR (DORIS, GPS-LEO satellites)
 - The DORIS and GNSS tracking networks are stable and uniquely well distributed geographically
 - AND other missions than the LAGEOS satellites (other spherical satellites, Jason-2/3) which can observe geocenter motion, in both competitive and independent manner
 - The number of laser range normal point data for Jason-2/3 is two to three times higher than for the LAGEOS satellites

Two options

- 1. Pilot project to develop a new IDS product
 - \Rightarrow Too soon to contribute to the next ITRF realization?
- 2. Campaign handled at the IERS level (as in the late 90s)?
- One should probably favor the first option

FRANK ARGUED THE CASE AT THE IERS DB

How DORIS can Contribute to Future Realizations of the ITRF Origin

AGU100 ADVANCING EARTH AND SPACE SCIENCE

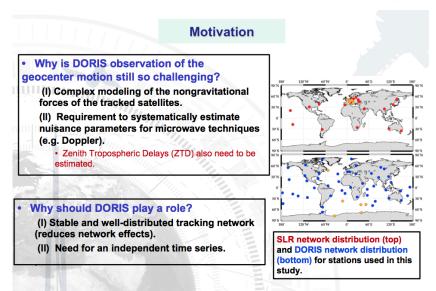
Journal of Geophysical Research: Solid Earth

RESEARCH ARTICLE

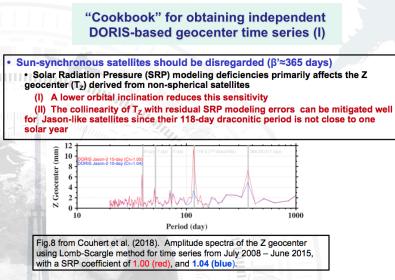
Systematic Error Mitigation in DORIS-Derived Geocenter Motion

10.1029/2018JB015453

Key Points:


- Independent geocenter coordinates were derived using DORIS data and the OSTM/Jason-2 satellite
- Sources of correlations and modeling issues were identified and mitigated
 Uncertainties in the realization of the
- ITRF origin are addressed

Alexandre Couhert¹, Flavien Mercier¹, John Moyard¹, and Richard Biancale^{2,3}


¹Centre National d'Etudes Spatiales, Toulouse, France, ²Deutsche GeoForschungsZentrum, Oberpfaffenhofen, Germany, ³Groupe de Recherche de Géodésie Spatiale, Toulouse, France

Couhert, A., Mercier, F., Moyard, J., Biancale, R., 2018. "Systematic error mitigation in DORIS-derived geocenter motion", J. Geophysical Research -Solid Earth, doi: 10.1029/2018JB015453.

· cnes · · ·

HOW TO DERIVE DORIS-BASED GEOCENTER 谁

HOW TO DERIVE DORIS-BASED GEOCENTER 谁

"Cookbook" for obtaining independent DORIS-based geocenter time series (II)

Vertical site displacement should be estimated

(I) It is a sensible way to take into account the various error sources reducing the quality of station height estimates => better sense the motion of CF w.r.t. CM:

(a) Nontidal (atmospheric, hydrological) loading corrections are currently mismodeled
 (b) Multipath and troposphere delay parameters, ...

(II) An exclusive cross-track observability of the T_z coordinate should be secured.

 Necessary for not compromising the observability of the Z geocenter coordinate with residual Once-Per Revolution (ORR) modeling error perturbations
$$\begin{split} & \overbrace{\delta_{g}(t) = -\frac{\delta_{g}(0)}{2\omega_{0}} \cos(\tau) = -\frac{\delta_{g}(0)}{\omega_{0}} \sin(\omega_{0}t)} & Observation \\ & of T_{Z} \text{ via the} \\ & \delta_{5}(t) = \left(\frac{1}{\omega_{0}^{2}} \left[\frac{R_{12}}{2} - T_{Z}\frac{GM}{2}\sin in\right] + 2\frac{\delta_{g}(0)}{\omega_{0}}\cos(\omega_{0}t) \cos(\omega_{0}t) + \frac{Cross-track}{cross-track} \\ & + \left(-\frac{R_{0}}{2\omega_{0}^{2}} + \frac{\delta_{g}(0)}{\omega_{0}}\sin(\omega_{0}t) + 2\frac{\delta_{g}(0)}{\omega_{0}} + \delta_{5}(0) \right) \\ & \delta_{W}(t) = \delta_{W}(0)\cos(\omega_{0}t) + \frac{\delta_{W}(0)}{\omega_{0}}\sin(\omega_{0}t) + \frac{\delta_{g}(0)}{\omega_{0}}\sin(\omega_{0}t) + \frac{\delta_{g}(0)}{\omega_{0}}\cos(\omega_{0}t) \\ \end{split}$$

SYNTHESIS

Synthesis

• The Jason-2/3 satellites are appealing for geodetic DORISbased geocenter motion determination and should allow a better realization for CF.

• Upcoming launches of future DORIS satellites HY-2C (inclination of 66°), Jason-CS/ Sentinel-6 (66°), and SWOT (inclination of 78°), should also permit the same type of geocenter solutions.
 Table 9

 Estimates of Geocenter Annual Variations From This Study and Independent Results

		Х		Y		Ζ	
	Solution	A (mm)	ϕ (day)	A (mm)	ϕ (day)	A (mm)	ϕ (day)
1	GPS+GRACE	0.9	105	3.5	334	_	_
	SLR L1+L2 (CN)	2.3	61	2.3	317	6.1	41
	SLR L1+L2 (CF)	1.7	59	2.7	322	3.6	39
	DORIS Jason-2	1.6	13	3.2	322	6.4	18
	SLR Jason-2	1.5	21	3.1	302	5.9	21

Note. A ratio = Amplitude ratio; $\delta \phi$ = Phase shift; GPS = Global Positioning System; DORIS = Doppler Orbitography and Radiopositioning Integrated by Satellite; SLR = Satellite Laser Ranging; CM = center-of-network; CF = center-of-figure.

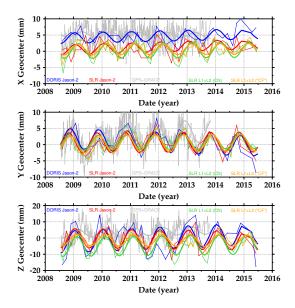
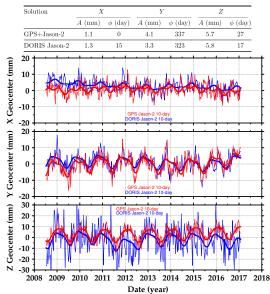



Figure 11.5 moothed DOR5-only Jason-2 geocenter motion time series using a Kalman filter. The bold lines represent the adjusted seasonal (semiannul and annual and bias parameters, while the thin lines incluste the long-term component. Fictitious +10 and -10 mm offsets were introduced along the X and Z axes, respectively, DOR5 = Doppler Orbitography and Radiopositioning integrated by Satellete.


IDS Report / IERS DB Meeting No. 67, Dec 08, 2018

SLR/DORIS AGREEMENT (PREVIOUS PAPER)

cnes ·

GPS/DORIS AGREEMENT (ARTICLE IN PREP.)

cnes ·

PRELIMINARY WG'S OBJECTIVES

- Identify a list of IDS members
 - At least two to three groups should be able to produce similar results so that a combination could be performed
 - CAVEAT : Spacecraft attitude data (quaternions) have to be processed
- Solicit participation from non-IDS members
 - Jason-like altimetry missions are all equipped with three independent geodetic techniques (DORIS, GPS, and SLR)
 - Individual IGS and ILRS members could at least contribute on this basis and/or provide external geocenter motion estimates
 - Can geophysicists independently validate the derived time series based on geophysical interpretations ?
 - > Benefit from the interactions with institutes interested in this topic
 - 2017–2020 : "GEODESIE" research project aiming at the improvement of the quality of the space-geodetic references (IGN, CNES, Paris' Observatory, and ULR)
 - 2020–2021 : CNES/IGN TOSCA research contract on underpinning geocenter motion estimation approach differences
- From those who volunteers to process a DORIS Jason-2/3 geocenter motion time series in the frame of the ITRF2020 reprocessing, a combined DORIS solution could thus be available by that time