ESTIMATION OF THE DORIS PHASE CENTER LOCATIONS FOR THE CURRENTLY FLYING ALTIMETER MISSIONS

Ait-Lakbir H. (CS SI), Couhert A. (CNES), Mercier F. (CNES), Moyard J. (CNES), Jalabert E. (CNES), Houry S. (CNES)

IDS Analysis Working Group, London, May 2017

Scope of the study

- Estimation of the distance between the satellite CoM and the DORIS receiver phase center
- Check the consistency between DORIS and the other tracking systems (SLR or/and GPS)
- Missions/Arcs
 - CryoSat-2, HY-2A, OSTM/Jason-2, Saral/AltiKa over 2015
 - Jason-3: 1-26
 - Sentinel-3A: 1-29

Radial and cross-track offsets Estimation

DORIS

- Adjustment of a constant acceleration over an arc

 — Perturbation in displacement, from the Hill equations
- DORIS-only dynamic orbits
- + empirical accelerations

GPS, SLR

- Adjusted GPS phase center or LRA reference point offsets
- GPS-only or SLR-only dynamic orbits

Effect of the low-elevation measurements

Moon (om)	Saral		
mean (cm)	A	В	
Radial	-3.3	-2.3	
Cross-track	-0.5	-0.6	

Test A: Initial processing

Test B: Processing with

- low-elevation measurements + weighting function
- estimation of horizontal tropospheric gradients

The estimated radial bias is sensitive to whether the lowsite measurements are used or not.

 \rightarrow Overestimation of 1cm for Saral

Jason 2 (FY)

Maan (cm)	Jason 2 (FY)			Jason 3 (FY)		
wean (cm)	А	В	С	А	В	С
Radial	-2.1	-1.1	-0.9	-2.6	0.0	0.4
Cross- track	-0.3	-0.2	-0.1	-0.3	-0.2	0.0

Test A: With all DORIS stations Test B: With adjusted frequency drifts for the SAA stations Test C: Excluding SAA stations

The sensitivity to the SAA affects the estimation in radial.

- \rightarrow Gain of 1.0 cm for Jason-2
- \rightarrow Gain of 2.6 cm for Jason-3

Consistency between the tracking systems

- A 2.5cm DORIS offset is observed
 - \rightarrow No effects on the radial orbit performances
 - \rightarrow Effects on the estimation of DORIS stations heights ?
 - \rightarrow Effects on the reference frame scale factor ?
- For HY-2A, a 4.7cm DORIS bias is observed (\rightarrow 4.41cm).
- No GPS or SLR offset, except for HY-2A (SLR) and Sentinel3-A (GPS)

GPS

Consistency between the tracking systems

- For Sentinel-3A, the 3 tracking systems observed a "large" bias
 - \rightarrow Errors in the solar radiation pressure model ?
 - \rightarrow Errors in the location of the CoM ?
- No significant DORIS, SLR or GPS offsets for the other missions.

GPS

DORIS SLR

Relative along-track offsets Estimation

- Use the other tracking systems to observe the DORIS phase center location
 - DORIS + SLR, DORIS + GPS and SLR + GPS
 - Dynamic orbits
- Adjusted parameters
 - Location of the GPS phase center
 - Location of the LRA optical center

Relative along-track offsets

Consistency between the tracking systems

- Good consistency for Cryosat, Jason-2, Saral (and HY-2A?).
- For Jason-3, DORIS and SLR are consistent but the GPS phase center seems biased (or may be due to GPS data screening).
- For Sentinel-3A, DORIS and GPS are consistent but the LRA optical center position seems biased.

Conclusion

- A DORIS phase center offset of -2.5 cm, observed radially for several missions may affect the reference frame scale factor.
- DORIS is consistent with the other tracking systems along-track.
- There is no significant cross-track offset, except for Sentinel-3A, probably due to a bias in the location of the CoM.

THANK YOU FOR YOUR ATTENTION

ADDITIONAL MATERIALS

 Hill equations solved for a constant acceleration adjusted over an arc

$$\delta_R(t) = -\frac{C_R}{3n^2} + \frac{2 C_T}{n} t$$
$$\delta_T(t) = -\frac{3C_T}{2} t^2$$
$$\delta_N(t) = \frac{C_N}{n^2}$$

- Along-track unobservable
- Coupling between the radial and along-track directions
 → Constrain C_T

 Coupling between the cross-track direction and the solar radiation pressure model

 \rightarrow Empirical accelerations

Effects of low-elevation measurements Saral

Effects of the SAA (1) Jason-2 (Fixed-Yaw regime)

Effects of the SAA (2) Jason-3 (Fixed-Yaw regime)

Radial and cross-track offsets DORIS phase center offsets

Relative along-track offsets

Relative along-track offsets

—— Cryosat	—— Jason-3
—— Ну2а	—— Saral
—— Jason-2	—— Sentinel-3A