

International DORIS

Current Limitations in DORIS POD & Preparations for the next ITRF

F.G. Lemoine

IDS AWG@ESOC, Darmstadt, Germany
May 26-27, 2010

Issues

- 1. Review of ITRF2008 Modeling by AC's
- 2. Non-conservative modelling.
- 3. <u>Troposphere modelling</u>.
- 4. New gravity models, static & time-variable; New ocean tide models, esp. for S2?
- 5. DORIS system time-bias.
- 6. Atmosphere & Hydrological loading.
- 7. Phase maps for DORIS antennae, ground or spacecraft?
- 8. Nonlinear motion for stations? DPOD2008?

AC Modelling summary, ITRF2008. (1)

AC	Gravity	Atmos.	Ocean	Troposphere +	Elev. Cutoff
		Gravity	Tides	Met Data +	(Deg)
				Mapping	
				Function	
ESOC	EIGEN-	NCEP	FES2004	GMF+GPT +	10°
	GL05C			GMF	
	(120x120)				
GAU	GGM02C	NCEP	GOT4.7	Hopfield + GPT+	12°
				Niell	
GOP	EIGEN-	ECMWF	CSR3	GMF+ GPT +	10°
	GL04S			GMF	
	(100x100)				
GSC	EIGEN-	ECMWF	GOT4.7	Hopfield + GPT+	10°
	GL04S1			Niel1	
	(120x120)				
IGN	GGM03S	-	FES2004	GMF+ formula	10°
	(120x120)			+GMF	
INA	GGM01C	-	CSR3	Lanyi+	15°
	(120x120)			formula+	
				Lanyi	
LCA	EIGEN-	ECMWF	FES2004	(1)	12°
	GL04S			VE -vide Defens 200	

 After 2002. Dry and Wet Interpolated from ECMWF grids; Before 2002, use DORIS Met. Data. Mapping function Guo and Langley (2003).

Table 3a, Valette et al., 2010.

AC Modelling summary, ITRF2008. (2) International AC Solar Radiation Pressure Atmosphere Drag Coefficient Planetary Radiation DORIS

AC	Solar Radiation Pressure Modelling	Atmosphere Density Model	Drag Coefficient Estimation	Planetary Radiation Pressure
ESOC	Envisat : ANGARA Doombos et al. (2002) T/P & SPOT's : Box- wing	MSIS90	Cd/2.4 hrs	Knocke et al. (1988)
GAU	T/P, SP2, SP3: GSFC(1) box-wing (untuned) SP4, SP5, Envisat: CNES box-wing (untuned) (2)	MSIS86	SPOT's & Envisat : Cd/6 hrs T/P : Cd/8hrs	Knocke et al. (1988)
GOP	N/A (3)	N/A (3)	(3)	N/A (3)
GSC	T/P, SP2, SP3: GSFC (tuned) (1) SP4, SP5: CNES (tuned) (2) Envisat: UCL, Sibthorpe (2006)	MSIS86	SPOT's & Envisat : Cd/2hrs. Cd/1hr 2001-2002 T/P : Cd/8 hrs	Knocke et al. (1988)
IGN	CNES box-wing (tuned) Gobinddass et al. (2009)	DTM94	SPOT's & Envisat : Cd/1hr T/P :Cd/day	Knocke et al. (1988)
INA	CNES box-wing (untuned) (2)	DTM94	SPOT's & Envisat : Cd/6hrs T/P : Cd/day	Not Applied
LCA	CNES box-wing (untuned) (2)	DTM94	T/P: Cd/12 hrs SPOT's & Envisat: Cd/4 hrs Cd/1 hr 2001-2002	Albedo & IR values from 6-hr ECMWF grids

^{(1).} See Le Bail et al. (2010) for GSFC macromodel summaries.

^{(2).} CNES macromodels available from the IDS data centers.

^{(3).} No exact models for non-conservative forces. Empirical constant and harmonic parameters in Sun and y-directions; Stochastic parameters along-track every 15 minutes (Stepanek et al., 2006)

Nonconservative force model improvements?

All AC's used DTM94 or MSIS86. Use newer atmosphere models? (e.g. GRACE-derived; or JB2006, Bowman et al.,

2008-J. Atmos. Sp. Physics)

UCL models for SPOT's & Cryosat-2?

Self-shadowing as in Mazarico et al., 2009, J. Spacecraft Rockets, for MRO?

from Sun from Mars from velocity

Spacecraft attitude at three different orbital positions - view from different directions.

Troposphere modelling

- Errors in mapping functions propagate directly into scale of solutions. ==> Use GMF or VMF rather than older models; Test application at lower elevation angles.
- Test application of tropospheric gradients?
- Test application of temporal constraints by station? E.g. The SPOT & Envisat satellites are sun-synchronous with time at descending node close to ~22:00 hrs solar time. Why not use this information to our advantage?

New Geopotential Models

- New (static) geopotential models with GOCE and/or GOCE+GRACE data will soon be available.
- New time-variable solutions, e.g.
 - CNES version2 solutions (Bruinsma et al., 2010).
- GFZ & CSR & other (TU Delft, GSFC?) analysis centers regularly produce monthly GRACE solutions.
- All AC's should update to current-state of the art otide models (FES2004, GOT4.7, EOTxx, TPX06).
- S2 modelling (or possible mismodelling) could affect all the sun-synchronous satellites.
- Improvements in individual ocean tide models may be important for application of ocean loading corrections at certain locations (Greenland, Antarctica).

Tide Constituent Residuals from GRACE

International DORIS
Service

(Ray et al., JGR 2009)

Figure 4. Amplitudes (μm) at the O₁ tidal frequency in 4 years of GRACE range residuals, based on four different prior models of ocean tides. Locations having significant amplitudes suggest errors in tide models.

Figure 6. As in Figure 4 except for the S₂ constituent. The large low-latitude bands are suggestive of errors in the ECMWF atmospheric S₂ tide which was used for all four cases.

Current tide models have problems in specific areas e.g. some shallow seas, Antarctic Peninsula, Arctic That might affect ocean loading corrections for nearby stations ... Use improve Oload corrections for stations in these areas? IERS special bureau for loading? Other sources?

International DORIS Service

DORIS system time-bias (wrt. SLR)

SLR/DORIS vs DORIS-only Orbit Differences

But what to do for the SPOT satellites?

Nonlinear motions for stations

Gps-derived Concepcion earthquake displacement field

Relaxation (uplift) due to ice melt in Greenland; see Khan & Wahr et al., 2010, GRL.

Results with ign09wd01.stcd for Thule ...

•A measurable displacement at Santiago

Our near-term objectives should be to improve our non-conservative force modelling & the troposphere modelling as this will likely yield the most benefits ... But there are other issues.

