

ITRF2005 computation strategy

Why using a loading model to estimate a secular frame?

∄|≢

TRF a posteriori correction : impact on the secular reference frame

Ē

Residual annual signal amplitude in SLR translation and scale

	TX (mm)	TY (mm)	TZ (mm)	Scale (mm)
Before correction	3.2 +/- 0.3	3.9 +/- 0.2	2.8 +/- 0.4	1.7 +/- 0.2
After correction	0.6 +/- 0.2	2.1 +/- 0.2	2.4 +/- 0.2	0.8 +/- 0.2

Residual annual signal in VLBI scale

ſ		VLBI scale (mm, deg)	Annual thermal scale model
	Before correction	(1.7 +/- 0.2, 227+/-7)	
	After correction	(<mark>1.0 +/- 0.2</mark> , 161+/-11)	(1.3 +/- 0.1, 194+/-1)

* In red, residual annual signal greater than 1.0 mm

TRF a posteriori correction : station position residual annual signal

TRF a priori correction : case of SLR (1/2)

ŧ

Preliminary results Higher reduction in TZ annual signal in the a priori reduction. About **0.6 mm** (reduction of 4.3 mm vs 3.7)

Conclusion

Using a loading model :

- reduces SLR translation annual signals
- reduces network effect
- produces regularized coordinates consistent with the loading model

Future work

- Apply mass conservation constraint on the loading model
- Use gravity field model consistent with the loading correction in order to compute the SLR orbits
- Validate estimated velocity field after correction by:
 - Estimating tectonic plate Euler poles
 - Compare height velocity field with GIA models

