

Estimating daily Solar Radiation Pressure coefficients

<u>Marie-Line Gobinddass</u>^(1,2), Pascal Willis^(1,2) ⁽¹⁾Institut Géographique National, France ⁽²⁾Institut de Physique du Globe de Paris, France

SUMMARY

- Method used
- Estimated SRP coefficients (1/day, 1/satellite)
- Fixing vs estimating : Impact on results
 - TZ-geocenter
 - Station heights (Terre Adelie)
 - Precise Orbit Determination

•Conclusions

Method used

- We have this equation $\gamma_{SRP}^{Estimated}(t) = CR \cdot \gamma_{SRP}^{Model}(t)$ Model = -macro model (this study) -dedicated model (eg UCL)
- Estimated parameters :
 - SRP coefficient = CR (1/day)
 - Station positions (independent from ITRF)
- Fixed parameters : (to avoid correlation)
 - 1/rev accelerations = 0 (dynamic orbit)

Solar radiation pressure coefficients

Estimated parameter (1/day) = station position + SRP coefficient Fixed parameter = 1/rev empirical accelerations = 0

T/P break observed on July 27, 1993 change in receiver (chained vs unchained mode). Explanation?

Solar radiation pressure coefficients

Estimated parameter (1/day) = station position + SRP coefficient Fixed parameter = 1/rev empirical accelerations = 0

Solar radiation pressure coefficient : SPOT-5 satellite

Sun

SPOT 5 break observed on January 14, 2008 Solar panel re-oriented by CNES

$$\theta = \cos^{-1}\left(\frac{S'}{S}\right) = \cos^{-1}\left(\frac{CR'}{CR}\right) = \cos^{-1}\left(\frac{0.83}{1.03}\right)$$

S'

 $\theta \sim 36.5^\circ \pm 1^\circ$ (estimated) CNES value = $25^\circ + 10^\circ + 5^\circ = 40^\circ$

Re-orientation of : SPOT-5 satellite

IDS meeting, Paris, June 5, 2008

7/13

Proposal for IDS SRP coefficients (averages over complete data set)

SATELLITE	Mean SRP	A priori SRP model	COMMENTS
TOPEX	1.03	macro-model	0.96 (< 23JUL-1993)
ENVISAT	1.02	macro-model	
JASON	0.92	macro-model	
SPOT-2	1.08	macro-model	
SPOT-3	1.08	macro-model	
SPOT-4	1.13	macro-model	
SPOT-5	1.03	macro-model	0.83 (> 14-JAN-2008)

Fixing vs estimating : Impact on results

- TZ-geocenter
- Station heights (Terre Adelie)
- Precise Orbit Determination

TZ-Geocenter (multi-satellite) Estimating vs fixing daily SRP

Amplitude TZ estimated(mm)
Amplitude TZ fixed to proposed values(mm)

IDS meeting, Paris, June 5, 2008

Station height time series Terre Adelie, Antarctica (high-latitude)

118-day Problem detected before : Williams and Willis, 2006; Le Bail and al, 2006; Feissel-Vernier and al., 2007; Almavict and al; in press

Validation for Precise Orbit Determination

<.,,

24

Ó

4|▶

48 HOURS 96

72

IDS meeting, Paris, June 5, 2008

CONCLUSIONS

- Fixing SRP coefficients provide better results :
 - -TZ-geocenter

-Station height (high latitude)

-Precise Orbit Determination (smaller improvement)

- Proposal to adopt common values for IDS (ITRF 2008)
- Need for better SPOT SRP models (UCL initiative)
- Understanding the SRP breaks (SPOT-5 \checkmark +T/P ?)