Low elevation data, downweighting and mapping function Orbit results

Spot-2,-4,-5,Envisat: 4 series of 4 weeks (23/12/2007-19/01/2008)
Studies cases :
Case 1: Guo\&Langley MF; without data $<12^{\circ}$; with dow nweighting (LCA current processing)
Case 2: Guo\&Langley MF; with data $<$ 12 $^{\circ}$, without downw eighting
Case 3: Guo\&Langley MF; with data $<12^{\circ}$, with downweig hting
Case 4.2: GMF ; with data $<12^{\circ}$, without downweighti ng
Cross-comparisons:

Low elevation data $<12 \mathrm{dg}$	case $1=$ w/o data $<12 \mathrm{dg}$ case $3=$ with data $<12 \mathrm{deg}$
Downweighting law	case $3=$ with downw. case $2=$ w/o downw.
Mapping function	case $2=$ Guo\&Langley case $4=$ GMF

Post-fit rms and number of measurements

Spot2 and Envisat: Higher RMS with data < $12{ }^{\circ}$ (no data below 12 for Spot-4 and -5) All satellites: Higher RMS with GMF (red vs blue curves)

Orbit comparison

Low elevation data

Downweighting

Mapping function

No significant differences (RMS and Average <5mm). Same conclusion for all the satellites

Tropospheric Bias adjusted per pass (MZB)

Low elevation effect :

No significant differences on MZB for low elev. data

Mapping Function effect :

Larger MZB with GMF for most stations, not particularly for low elev. data

Low elevation data, downweighting and mapping function Orbit results

Conclusions:

Take into account data below $<\mathbf{1 2}^{\circ}$:

- DORIS RMS larger of $0.01 \mathrm{~mm} / \mathrm{s}$
- possible with our Mapping Function (Guo \& Langley) better than GMF
- only interesting for ENVISAT and SPOT2 (data available only for both satellites)
- no significant differences in orbit comparison
- no significant differences on tropospheric bias for low elevation data

Take into account downweighting:

- no significant differences in orbit comparison
- DORIS RMS larger of $0.03 \mathrm{~mm} / \mathrm{s}$

Is it really interesting to take into account low elevation data?

