

PRELIMINARY STRATEGY FOR JASON-2 POD

MANEUVER PLAN AND EARLY OPERATIONS CALENDAR

For a launch on June 15

- Jason-2 is injected in the Jason-1 orbit plane, 10 km below
- First test maneuver around June 20
- Rendezvous Maneuvers on July 4 and July 7
- For a launch on a later day the date of the rendezvous maneuvers can be either earlier or later

- Doris is turned-on on launch day
- Earth Acquisition on L+1
- GPS turned-on L+2
- Predicts to ILRS starting on L+2
- Cycle 0 from 7/7 to 12/7
- Cycle 1 starts on July 12 (same as Jason-1 cycle 240)
- Is anyone interested in Doris data before cycle 0 ?

¢ cnes

SATELLITE MODEL

- Use the GDR-C standards, as for Jason-1 reprocessing
- Main differences with respect to Jason-1, for POD purposes
 - Change in inclination of GPS antennas axis
 - Redistribution of the thermal fluxes which led to a different size of the radiators. This has two consequences
 - A different portion of the main body surface will be affected by specular reflection of sunlight and Earth albedo
 - Different values of the body-fixed forces, used to model the satellite thermal emissivity

Example: radiators on -Y face

Doris AWG meeting - Paris, 5/6 March 2008

Example: radiators on +Y face

Example: radiators on +/-Z faces

Total radiator surface on each side

	JASON-1 (m2)	JASON-2 (m2)
-Y	0,31	0,66
+Y	0,66	0,90
-Z & STA	0,37	0,09
+Z	0,28	0,43
+X	0,15	-

Area required by thermal control (close to the actual surface)

Increased diameter of microwave radiometer

- + Jason-2: 1.00 m
- + Jason-1: 0.87 m

Dissipated thermal fluxes are not distributed in the same way...

	Jason-1	Jason-2			
X	40 W	0 W			
Υ	80 W	60 W			
Ζ	0-8 W	100 W			

■10 W ~ 2.2×10⁻⁸ N

■Z-force would lead to a radial bias of ~0.4 mm on Jason-2

SATELLITE MODEL

Solar panels are identical, and are the main contributors to SRP force
Initially, use the Jason-1 macromodel for Jason-2

Corrected version (as used in GDR-C)

Jason visible										
surfaces	X+	X-	Y+	Y-	Z+	Z-	SA+	SA-		
area	1.65	1.65	3.0	3.0	3.1	3.1	9.8	9.8		
specular ref.	0.436 0.0938	0.434	0.357 1.188	0.321 1.2002	0.240	0.318	0.344	0.004		
diffuse ref.	0.209 0.2811	0.215	0.375 -0.0113	0.400 -0.0044	0.402	0.370	0.006	0.298		
absorbed ref.	-0.001 0.2078	0.005	0.271 -0.0113	0.308 -0.0044	0.330	0.267	0.647	0.697		

Scale 1.00 0.97

Analyze estimated empirical forces

 particular attention will be paid to the fixed yaw attitude regime, when -Y side is illuminated and errors in the body fixed X force are observable thanks to the yaw flip