C21/S21 issue

Point 1 - For the pole tide, we need xp(t)-xp_mean(t) and yp(t)-yp_mean(t).

Point 2 - xp(t) and yp(t) come from the official IERS EOP series.

Point 3 – At CNES/GRGS we have taken values of xp_mean(t) and yp_mean(t) based on the last 100 years (see graph next page).

Point 4 – For the geopotential, in EIGEN-GL04S and C, we simply solve for the C21/S21 over the data span, either static or time-variable.

Point 5 – On the other hand, based on the equations from IERS Technical Note 32 p57, recalled by Frank, one can compute the C21/S21 from xp(tref) and yp(tref) and the C20, C22 and S22 from each gravity field. The same applies for C21_dot/S21_dot, from xp(t) and yp(t) and C20_dot, C22_dot and S22_dot.

Point 6 – The values of point 5 do not necessarily coincide with the values of point 4...

IERS mean pole series

· ______

Transformed Gravity Models for Epoch 2004

•	Model	Coef	Original Value	IERS VALUE
•	EGM 2008	C(2,1) S(2,1)	-0.20661550967418 e-9 1.3844138913798 e-9	-0.236251 26249283 e-9 1.511651 1431905 e-9
•	Eigen GL04S	C(2,1) S(2,1)	-0.225214669755 e-9 1.44094981423 e-9	-0.236251 31926512 e-9 1.511651 4419256e-9
•	ITG Grace03s	s C(2,1) S(2,1)	-0.2654790999243 e-9 1.4753933142830 e-9	-0.236251 24068999 e-9 1.511651 0029183 e-9