

CNES orbit solutions

OSTST Venice 2006 – POD & Geoid session

CNES POD Team (*), with entries from Jason-1 POD Group

(*) F. Mercier, J.P. Berthias , P. Broca, L. Cerri, C. Ferrier, A. Guitart, S. Houry

Background (1)

<u>Preparation of reprocessing :</u>

-evolution of configurations

earth potential parameterisation Doris preprocessing Doris along track biases SAA frequency corrections, weightings GPS antenna map SLR (network, parameterisation, weighting)

-(re)processing of data sets

GPS orbits GPS/SLR/Doris orbits

Background (2)

- Jason and Envisat analyses
- important change of POE configurations

New configuration applied since sept. 2005 on request of altimetry

Jason cycle 136 Envisat cycle 41

Similar to the reprocessing configuration

New models (earth potential...) GPS/Doris/SLR orbits for GDR Jason

Configurations (1)

New configurations	Jason	Envisat
Earth potential Tides Atmosphere model Solar radiation pressure Satellite radiation	EIGEN3 FES2004 DTM94 modified (0.97) ref. Aviso model	EIGEN3 FES2004 MSIS86 reference
Parameterisation		
attitude	quaternions	theoretica

1/rev terms (T,N)
drag (every 2 orbits)

quaternion 12 hours x theoretical 24 hours x

Configurations (2)

Nev	w configurations	Jason	Envisat
Dor	is		
	preprocessing	Х	Х
	along track bias	Х	X
	SAA weighting	X	
GPS	in GDR since cy 136 antenna map (phase) constellation	x new JPL model JPL (backup IGS)	
SLR			
	network definition	X	Х
	weighting, biases	Х	Х

reprocessing : new configurations and GPS/Doris/Laser for Jason GPS only : jpl constellation solution (some gaps) GPS only : igs constellation solution (110 - 135)

Doris only solutions (Jason, Envisat) for Doris along track bias estimation

Doris residuals

су

су

GPS phase residuals (JPL or IGS constellation)

GPS centre of phase variations

GPS antenna position adjusted (cy 110 - 135) :

GPS/Doris/SLR solutions

1 cm bias in Y (direction of solar array axis)

6 month periodic term in X and Z

No important radial effect observed on the orbits

GPS centre of phase adjustment (1)

GPS centre of phase adjustment (2)

New solutions :

crossover rms

improvement versus GDR
GPS and GPS/Doris/SLR solutions are very close

crossover mean

bias 0.5 cm
periodic 60 days
 important on GPS solutions : 0.5 cm

Crossover mean

Crossover rms

Satellite direct radiation model

<u>Aviso model (satellite radiation) :</u>

40 w in +X direction 80 w in +Y direction -1.83 10^{-10} m/s² -3.67 10^{-10} m/s²

Some differences observed on fixed yaw periods :

- asymmetry in the adjusted drag (X satellite is along track)
- can be improved by applying a positive value on X acceleration (see J. Ries remarks)

Adjusting the X value gives better results (remark the + sign) 4.5 10^{-10} m/s² to 5.0 10^{-10} m/s²

- SLR residuals improved
- adjusted drag more realistic

Drag acceleration around flip (cy 125)

effect of X radiation term

SLR residuals effect of X radiation term

су

Crossover rms

effect of X radiation term

Conclusion

The new configuration (since Jason cy 136) produces very good products (GPS/Doris/SLR GDR orbits) these products have been tested by altimetry

Some older Jason cycles have been reprocessed with the same configuration in order to have longer solution series (GPS only, GPS/Doris/SLR)

GPS and GPS/Doris/SLR orbits are very close. The tri-technique product is more robust in cases of data gaps in GPS, or in Doris

The corresponding configuration (since Envisat cy 41) shows similar performance improvements