

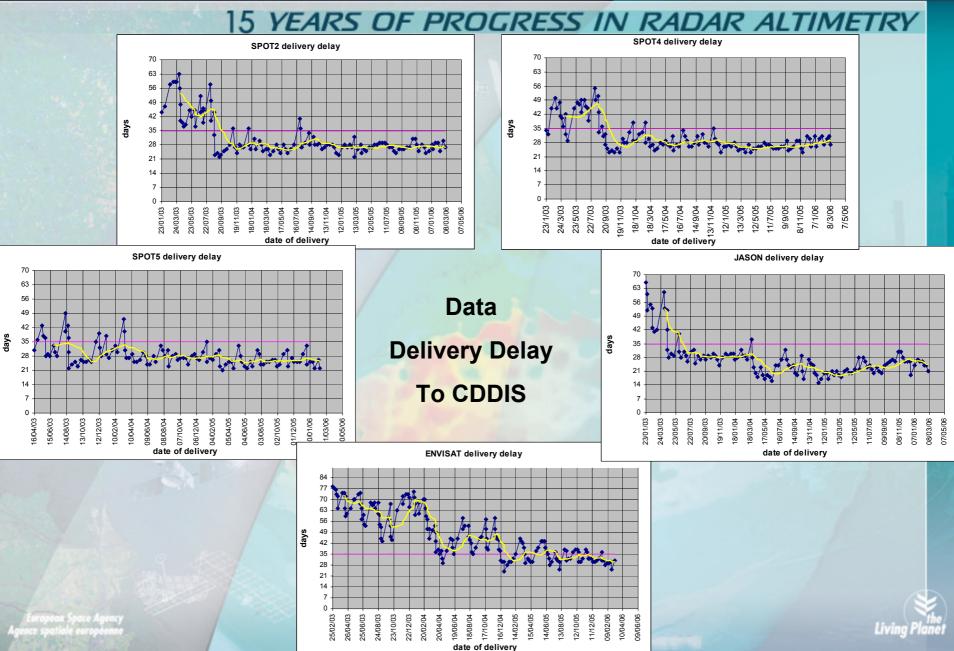
15 YEARS OF PROGRESS IN RADAR ALTIMETRY

DORIS Data delivery delay DORIS Data format

European Space Agency Agence spatiale européenne

15 YEARS OF PROGRESS IN RADAR ALTIMETRY

DORIS Data delivery delay


European Space Agency Agence spatiale européenne

15 YEARS OF PROGRESS IN RADAR ALTIMETRY

Potsdam, October 10-11, 2005, IERS Combination Workshop, propositions

Product Type	Main Parameters	Generation Cycle	Maximum Latency	Based on
Multi-Year	ITRF EOPs ICRF	Yearly	1 Year	Reprocessedhigh-accuracycombinedlongtermintra-technique series
Weekly « Final »	EOPs Station Coordinates	Weekly	3 weeks	Based on the « final » routine intra-technique combined products and the multi-year solutions
Daily « Rapid »	EOPs Station Coordinates (Near real-time monitoring)	Daily	1 day	VLBI Intensive and IGS Rapid Products and, possibly SLR & DORIS
Daily « Predicted »	EOPs	Daily	1 day	Combined daily rapid IERS products

European Space Agency Agence spatiale européenne

15 YEARS OF PROGRESS IN RADAR ALTIMETRY

CPP Milestones

2006-04-05, Vienna

Progress Meeting of Combination Pilot Project,

2006-07-01

Start of routine production of combined weekly final IERS products

How do or will IDS comply with IERS CPP requirements ?

European Space Agency Agence spatiale europeenne

15 YEARS OF PROGRESS IN RADAR ALTIMETRY

DORIS Data format

European Space Agency Agence spatiale européenne

15 YEARS OF PROGRESS IN RADAR ALTIMETRY

Last DORIS Receivers evolution

The next generation of DORIS receivers (DGXX) will implement 7 channels (UT) in order to allow more beacons to be tracked. They will also perform more accurate and more complete phase, delta-phase and pseudo-range measurements

Product 1B evolution ?

European Space Agency Igence spatiale européenne

С

IDS WORKSHOP, 13 – 15 March 2006

15	YEARS OF PROGRESS IN RADAR ALTIN	METRY
	DORIS Data Exchange Format Version 2.2(November 2005) Standard Exchange Format for Range-Rate Observations	
Columns Subset	Description	
1-7 8-9	Satellite identification Measurement type 39 = DORIS Doppler (up link, on board receiver)	
10-11 10	Time system indicators 0 = ground received time 1 = satellite transponder/transmitter time	
	2 = ground transmitted time 3 = satellite received time	
11	0 = UT0 1 = UT1 2 = UT2	
	3 = UTC (USNO) 4 = A-1 (USNO) 5 = TAL (DIDA)	
	5 = TAI (BIPM) 6 = A-S (Smithsonian) 7 = UTC (BIPM)	
12.16	8 = GPS 9 = station dependent correction required Station ID	
12-16	Fourth letter indicates Alcatel(A) or Starec(B) antenna	(3
te Agency arapteme	Venice (Italy), 13 > 18 March 2006	Living Pla

	15	YEARS OF PROGRESS IN RADAR ALTIMETRY
Columns	Subset	Description
17-32	17-18	Time observation (beginning of count) Time of observation (beginning of count) Year minus 1900 if greater than 90 Year minus 2000 if less than or equal 90
	19-21 22-26 27-32	Day of year (January 1 = Day 1) Seconds from midnight Fractional part of seconds (microseconds)
33-35	33	Preprocessing indicators 0 = ionosphere correction applied 1 = ionosphere correction not applied
	34	0 = troposphere correction applied 1 = troposphere correction not applied
	35	0 = point considered to be good 1 = point edited during pre-processing 2 = point edited during post-processing 3 = 3.0 beacon in restart mode (frequency not stable) 4 = near zero Doppler shift (risk of error)
36-45		Count interval in 0.1 microseconds
46-56		Range rate in micrometers/second

15 YEARS OF PROGRESS IN RADAR ALTIMETRY

Column	s Sub	set Description
57-66	57-60	Meteorological data Surface pressure (millibars)
	61-63 64-66	Surface temperature (degrees kelvin) Relative humidity (percent)
67-72 73-80 81-87	04 00	Observation standard deviation (micrometers/second) Ionospheric refraction correction (micrometers/second) Tropospheric refraction correction (micrometers/second)
88-90	88	Meteorological data source, beacon type Beacon type 1 = permanent network 2 = field experiment 3 = others
	89	Meteorological data source 0 = measured parameter 1 = pressure from a model 3 = temperature from a model 4 = pressure and temperature from a model 5 = humidity from a model 6 = pressure and humidity from a model
	90	8 = temperature and humidity from a model 9 = pressure, temperature, and humidity from a model Channel indicator (1, 2, etc.)

Column	s Sub	15 YEARS OF PROGRESS IN RADAR ALTIM	ETRY
57-66 67-72 73-80 81-87	57-60 61-63 64-66	Meteorological data Surface pressure (millibars) Surface temperature (degrees kelvin) Relative humidity (percent) Observation standard deviation (micrometers/second) Ionospheric refraction correction (micrometers/second) Tropospheric refraction correction (micrometers/second)	
88-90	88	Meteorological data source, beacon type Beacon type 1 = permanent network 2 = field experiment 3 = others	
	89	Meteorological data source 0 = measured parameter 1 = pressure from a model 3 = temperature from a model 4 = pressure and temperature from a model 5 = humidity from a model 6 = pressure and humidity from a model 8 = temperature and humidity from a model 9 = pressure, temperature, and humidity from a model Channel indicator (1, 2, etc.)	
91-96	30	Center of mass correction (micrometers/second) including both effects: satellite and beacon Venice (Italy), 13 > 18 March 2006	Living Plan

15 YEARS OF PROGRESS IN RADAR ALTIMETRY

Specifications on the DORIS data format:

Time for DORIS = beginning of count interval Range rate has been commputed using the following equation: Vr = c / f(bea) [(f(bea) - f(sat)) - D / dt] = [c / f(bea)] [f(bea) - f(sat)] + [c / f(bea)] [-D / dt] (1) with Vr = range rate (m/s) dt = count interval (s) D = cycle count c = 299792458 (m/s) f(bea) = nominal beacon frequency (change from Version 1) f(sat) = best estimate of the actual satellite frequencylong term on-board frequency drift taken into account consistent with transformation from on-board time to TAI relativity contribution included

Because the true frequency offset between f(bea) and f(sat) will be slightly different from the nominal value, a bias is typically estimated for each station pass.

The corresponding processing equation is $Vr = c [df(bea) / fbea)] + [{1 + df(bea)} / f(bea)] [-Dr / dt] (2)$

= bias + [-Dr / dt] + [df(bea) / f(bea)] [-Dr / dt]

where df(bea) = difference between actual beacon frequency and the nominal value used to generate the data

15 YEARS OF PROGRESS IN RADAR ALTIMETRY

Dr = difference in range between end and beginning of count

Important note for Versions 2.x processing: In Version 1.0, the beacon frequency used to generate data was the best available estimate of the actual frequency.

In Versions 2.x, the nominal value of the beacon frequency is used instead.

For beacons where the offset between the actual and nominal frequency is large, the last term in Eq. 2 may not be negligible. This term must be explicitly included in the processing, with df(bea) / fbea determined from the pass frequency bias estimate.

When df(bea) is small, as in the case of Version 1.0 data, this term will have no significant effect. It is thus recommended to use the above expression to process all DORIS data regardless of format version.

All corrections (ionosphere, troposphere, and center of mass) should be added to observed values or subtracted from computed values.

Is it necessary to improve 1B product for taking into account the DGXX evolutions ?

European Space Agency Agence spatiale europeenne

Members:

IDS WORKSHOP, 13 – 15 March 2006

15 YEARS OF PROGRESS IN RADAR ALTIMETRY

Data Format Working Group Chaired by : John Ries Univ. of Texas, CSR

USA

Jean-Paul Berthias Werner Gurtner **Carey Noll Pascal Willis Jean-Jacques Valette**

Univ. of Berne NASA, GSFC JPL/IGN CLS

CNES

France Switzerland USA France France

