

Scintillation and Tomography Receiver in Space (CITRIS) used with the DORIS Radio Beacon Network

Paul A. Bernhardt, Carl L. Siefring, Ivan J. Galysh, Thomas F. Rodilosso, Douglas E. Koch, Thomas L. MacDonald Plasma Physics and Space Systems Development Divisions, Naval Research Laboratory, Washington, DC 20375

> Matthew R. Wilkens, G. Paul Landis SFA Incorporated, Crofton, MD 21114

IDS WORKSHOP, Venice, Italy 15 March 2006

Characterization of Ionospheric Phase Screens with the CITRIS Receiver on STPSAT1

- Objective: Reconstruct Real-Time Phase Screens for Multiple Frequency Scintillation Estimation
- New Satellites, Inclinations and Launch Dates
- CERTO: Space to Ground Measurements
 - Orbiting Beacon to Ground Receiver
 - TEC and Scintillations
 - Sampled Projections of Many Phase Screens
- CITRIS: Ground to Space Measurements
 - Ground Beacon to Orbiting Receiver
 - TEC and Scintillations
 - Sampled Projections from One Phase Screen
- CITRIS Space-Based Receiver
- Conclusions

Major Ionospheric Propagation Effects on Space-to-Ground Links

- Phase Fluctuations
- Amplitude Fluctuations
- Absorption
- Frequency Shifts

- Faraday Rotation
- Group Delay
- Scattering
- Multipath

Radio Beacons for Ionospheric Characterization

NRL Radio Beacon Sensors

CERTO Beacon Orbits

Radio Beacon Experiment Objectives

Program Goals

- Detect When and Where Radiowave Propagation Through the Ionosphere Is Adversely Affected by Scintillation and Refraction
- Provide a Global Map of Ionospheric Densities and Irregularities to Improve Current Models of the Ionosphere

Ionospheric Bubbles Dynamics

0 2 4 8 Scintillation Transmitter at 800 km 800 Prediction for **CERTO** 600 Altitude (km) Beacon N_o Peak Operation 400 **Rhase To Ground Receivers** 200 0 -200 -100 100 200 300 -300 Zonal Distance (km) 40 15 VHF UHF 30 3 10 20 2 5 Amplitude (dB) 1 10 0 0 0 Signal -10 dB -1 dB -1 [-10 -5 Dropouts -20

-10

-15

-200

-100

0

100

200

-30

-30 dB

-200

-100

0

100

200

Electron Density (10⁵ cm⁻³)

-100

-200

0

100

200

CERTO RADIO BEACON GEOMETRY FOR TEC AND SCINTILLATION MEASUREMENTS

Digital Propagator for Diffracted Waves

Received Signals: Diffracted Wave

$$U_{1}(x, R + z; \lambda_{k}) = FFT^{-1} \left\{ FFT \left[U_{0}(R, x) \right] \left(f_{x} \right) exp \left[-j\pi f_{x}^{2} \lambda_{k} z \right] \right\}$$

Beacon Transmission: Spherical Wave Front $U_{0}(R) = A_{0} \frac{e^{j(2\pi R / \lambda + \phi)}}{R^{2}}$

Ionospheric Phase Screen: Radio Wavelength λ_k

$$\phi(\mathbf{x}) = \frac{-2\pi (40.3) \int_{s} n_{e} ds}{c^{2} / \lambda_{k}}$$

Formulation for Both Forward and Inverse Diffraction Calculations

Scintillation Prediction from Single Frequency Measurements Scintillation Screen Estimation

400 MHz Phase Projected from Satellite Beacon to the Ground

400 MHz Phase Projected from Satellite Beacon to the Ground

400 MHz Amplitude Scintillations Projected from Satellite Beacon to the Ground

400 MHz Amplitude Scintillations Projected from Satellite Beacon to the Ground

CITRIS Host Satellite: STPSAT1

-

sCintillation and Tomography Receiver in Space (CITRIS) Summary

- CITRIS Receiver will Provide Global Ionospheric Measurements
 - Ground DORIS Beacons (401.25 and 2036.25 MHz)
 - 200 Samples Per Second
 - Ground Doppler Predictions Uploaded to Receiver Every 2 or 3 Days
 - Measurements of Either DORIS or CERTO (150.012, 400.032, and 1067.752 MHz) Frequencies
 - Occultation Measurements with CITRIS on STPSAT1 Receiving the CERTO Beacon on NPSAT1
- Status
 - CITRIS Instrument Assembly Complete
 - Integration and Test of CITRIS Finished March 2006
 - STPSAT1 Launch Scheduled November 2006
 - Operations: Data Acquisition Either 40 Minutes per Day or Continuous for 48 Hours Four Times Per Year

CITRIS Flight Receiver

CITRIS Receiver Antenna

CITRIS Antenna Deployment on STPSAT1

Scintillation and Ionospheric Tomography Radio Instrument in Space (CITRIS): Space Based Monitor of DORIS Ground Beacons or Tandem Operations of NPSAT1 and STPSAT1 CERTO/LP

RF Link

CERTO/CITRIS Operations

on NPSAT1

- Simultaneous VHF/UHF/L-Band
- Satellite to Satellite Links
- Up to Two Days Continuous Operation
- TEC Inputs to Space Weather Models
- Global Scintillation Monitor

DORIS Station in Australia

CITRIS on

STPSAT1

DORIS UHF/S-Band Beacons at Ground Sites

Global Map of 56 DORIS Transmitters at 401 ¹/₄ and 2036 ¹/₄ MHz CW Transmissions with 0.8 s Modulation Every 10 m. Latitude Range: - 70° to + 80° Data Records: Absolute TEC (Differential Phase +Group Delay) UHF and L-Band Scintillations

Summary

- Orbiting Beacons and Ground Receivers Provide Sparse Samples
 of Radio Diffraction Patterns
 - Each Pattern Represents Beacon Position and Propagation Direction to Ground Receiver
 - Reconstruction of a Single Phase Screen is not Possible
- An Orbiting Receiver Fully Samples Phase and Amplitudes from Ground Beacon
 - Single Pattern that is Uniform Along Magnetic Meridian
 - Reconstruction of Phase Screen by Inverse Diffraction
 - Scintillations at Any Frequency Determined from Propagation Through the Reconstructed Phase Screen
- Scintillation Now-Casting Algorithm to be Tested Using CITRIS Data form DORIS Beacons
 - Scintillation and Tomography Receiver in Space (CITRIS)
 - Ground DORIS Beacons at 401.25 and 2036.25 MHz
 - Validation with CERTO and GPS Beacons
- CITRIS Flown on Air Forced Space Test Program STPSAT1
 - November 2006 Launch
 - 35° Inclination at 560 km Altitude

Items Requested from IDS by CITRIS

- DORIS Beacon Transmissions
 - Format of 0.8 Second Identification Repeated Every 10 Seconds
 - Start Time of Identification in UTC
 - Accuracy of Start Time for Identification
- Location and Frequency of Shifted DORIS Beacons
- Point of Contact for Engineering Questions

CITRIS Collaboration with IDS

- CITRIS Data from DORIS Beacons
 - Ionospheric TEC and Scintillations at 200 Samples/Second
 - Corrected Doppler for POD
- Host Additional DORIS Beacons to Support CITRIS
 - Kwajalein, Marshall Islands
 - Others
- Science Sharing on the Ionosphere and POD Data