IDS Workshop, Venice, 13-15 March 2006

DORIS absolute velocities on Sorsdal and Lambert glaciers in Antarctica

JJ. Valette¹, R. Govind², FG. Lemoine³

¹ CLS, Collecte Localisation Satellites, France ² Geoscience Australia, Canberra, Australia ³NASA Goddard Space Flight Center, Greenbelt, Maryland, US

Summary

Introduction

Context

IDS Pilot Experiment campaigns sites & installation data acquisition (lessons learnt) processing velocity results comparisons

Conclusions

Introduction

90% of the Antarctic ice sheet is discharged in glaciers & ice stream

In East Antarctica, the Lambert-Amery glacier-ice shelf drainage system is the largest

Context

Ice discharge in Antarctica and Greenland influences the global sea level and climate changes

Ice accumulation rate MASS BALANCE ? Ice thickness changes

Tools for surface velocities :

Altimetry : radar (ERS, Envisat,...), laser (lcesat) > mapping Geodetic : GPS, DORIS

• • •

A very difficult task: complex drainage structures, strong local variability (velocity, precipitations...)

IDS Pilot Experiment campaigns

GEOSCIENCE AUSTRALIA proposition for several weeks DORIS permanent monitoring stations

IDS Workshop, Venice, 13-15 March 2006

DORIS campaigns: sites & installation

Beacon program : Satellite selection (SPOTs) Approx. position (few km) Sequences of transmission IAT clock synchronisation Initial training by SIMB/IGN > Self operating

<u>Power supply :</u> 75 ah needed 2x60 W solar panel Voltage regulator

SSALTO/CNES Control Center :

401.25 MHz & 2036.25 MHz signals received at Toulouse, within a few hours Signal char. and Doppler obs. systematically checked Contact at Davis base in case of anomaly

Data acquisition & lessons learnt

Campaign	Period	# days (obser.)	DORIS dataset Sat pass./obs. #	Comments	<u>Save power :</u> 2 sat. enough
Sorsdall 2001	12-Nov-2001 13-Jan-2002	23	Spot2 5/13 Spot4 26/685 Topex 3/61	Power supply deficiency, too many satellites tracked	
Lambert 2002	9-Dec-2002 23-Jan-2002	11	Spot4 93/2928 Spot5 74/3621	Nominal operations after full beacon initialisation (self-training)	<u>encouraging</u>
Sorsdall 2003	29-Nov-03-08-Dec-03 02-Jan-04-23-Jan-04	9 21	Spot424/653Spot529/1191Spot4122/2101Spot5147/5130	Interruption due to a big storm and Katabatic wind	<u>Meteo risk</u>

Velocities processing

by Geoscience Australia IDS Analysis Center (R. Govind)

GEODYN software (NASA/GSFC, F. Lemoine)

<u>Modelling</u>

- GGM01S gravity field
- Time varying gravity applied for zonals up to degree 5, C(2,1) and S(2,1)
- Ocean Tides GOT99
- Ocean Loading from GOT99
- ITRF2000 apriori coordinates and velocity

Partials Generated for Each Satellite as follows:

- Global Set:
 - GM, Semi-Major Axis, flattening
 - Gravity coefficients to degree and order 10
 - _ X-Pole, Y-Pole and A1-UT1
 - Tracking Station Coordinates
- Arc Set:
 - State Vector
 - 8-hourly drag coefficient
 - General Acceleration (4)
 - Once/rev sine and cosine along and cross track
 - Measurement biases (Doppler) pass-by-pass
 - Tropospheric Scale Bias pass-by-pass

• Estimated Parameters at the Combination stage (all possible satellites):

- Tracking Station Coordinates
- X-Pole, Y-Pole and A1-ut1
- Gravity Field Coefficients to degree and order 2
- GM
- Satellite state vector, General Acceleration, Drag

Results

IDS Workshop, Venice, 13-15 March 2006

DORIS results & GPS comparison

DORIS results

Site	Velocity (cm/day)	Azimuth
Sorsdal (Dec 2001-Jan 2002) *	31.0	246.4
Sorsdal (Dec 2003-Jan 2004)	11.0	242.7
Lambert (Jan 2003)	128.7	56.3

* under refinement

Sorsdal (Dec 2001-Jan2002)

	DORIS	GPS
Days between obs.	31	65
Velocity (m/day)	0.31	0.31
Azimuth (°)	246.37	244.43

(Patrick, Univ. Melbourne, 2003)

Comparisons

IDS Workshop, Venice, 13-15 March 2006

DORIS/ERS

5 km digital elevation model > high velocity zones

Conclusions

DORIS monitoring of surface displacement

- > self operation of the beacon
- > routine data control at Toulouse, France
- > installation precaution (beacon program, power supply)
- > 2 or 3 polar satellites for high resolution

SORSDAL-LAMBERT glaciers dynamics

- > DORIS velocities from 10 to 130 cm/day
- > very strong local variation of ice-flow rates
 - (2 to 60 m/day over 2 km at Sorsdal, from Patrick, 2003)

Proposition for a DORIS experiment at International Polar Year?

- > Greenland (retreat of coastal glaciers)
- > ...