

NETWORK 2006 REVIEW: EVOLUTION, MAINTENANCE AND COLOCATIONS

Hervé FAGARD (Institut Géographique National)

Since the start of the renovation action (early 2000):

- 31 existing stations were renovated
- 4 stations were added to the network: Mahe, Thule, Crozet, Belgrano
- 8 stations were installed as a replacement for closed ones:
 - » Greenbelt (replacing Ottawa)
 - » Futuna (replacing Wallis)
 - » Sal (replacing Dakar)
 - » Jiufeng (replacing Purple Mountain)
 - » Male (replacing Colombo)
 - » Miami (replacing Richmond)
 - » Santa Cruz (replacing Galapagos)
 - » Monument Peak (replacing Goldstone)
- 2 stations were removed and not yet replaced: Arlit and Guam

Total: 43 new or renovated stations out of 56 (more than 3/4)

- The network renovation action was decided at the end of 1999
- It aimed at improving the long term stability of the antenna reference point
- In order to plan and monitor the renovation action, stations were classified using a somewhat subjective approach, into four categories (Excellent > Good > Dubious > Poor)
- Between 3 and 10 stations were renovated each year
- The whole process for a given station took between a few months and two years
- A couple of projects are still under way
- More than 80 % of the stations meet the new stability requirements (excellent or good)

Permanent network renovation progress (2)

Antenna support evolution example: Rio Grande (1)

Initial installation (1987): Alcatel antenna, very loose guying

Antenna support evolution example: Rio Grande (2)

First upgrade (1995): Starec antenna, good quality guying, mm-level centring and verticality

Renovation (2001): deeply anchored concrete pillar, A4 stainless steel plate

• Recommendation I-7 of the May 2004 IDS plenary meeting:

"An IDS Working Group should define criteria for site quality (quality of equipment, reference point stability, reliability of power supply, quality of station coordinates time series...) in order to identify a set of reference stations with accurate coordinates contributing to ITRF."

- Criteria have been defined, and stations assessed accordingly by IGN, on the following aspects:
 - Antenna stability
 - Co-locations
- Other aspects could be assessed in a similar way: maintenance, time series, etc.
- Weighted combinations of the above assessments could be used to meet various network evaluation needs

Antenna stability assessment

Principle:

- Evaluate the stability of each element that is part of the antenna support
- The more elements between the antenna and the ground, the more potential instability sources
- Assign "instability points" to each element, depending on its characteristics
- Calculate a weighted total of the "instability points"
 --> Instability Degree (ID) for each antenna
- The lower ID, the more presumably stable the antenna

Results:

- All current and past DORIS occupations have been assessed
- Criteria are evaluated, and ID calculated using a spreadsheet
- ID ranged between 9 (best) and 44 (worst) before the renovation, 7 to 31 now

Antenna stability assessment: what did we evaluate?

Guy-wires: •How tight are they? •Are they ideally arranged?

Building: •What is it made of? •How high is the antenna support above the ground? Antenna model: Starec / Alcatel Tower: model & height Location of the support

Antenna stability assessment: examples

Considered element	Criteria	Weight					~~~				-			
Antonno and curnerting plate			AREA	AREB	HELB	HEMB	SPIA	SPIB	SPJB	SYOB	SYPB	YELB	THUB	CADB
Antenna and supporting plate	Antenna	1	2	1	1	1	2	1	1	1	1	1	1	1
	Supporting plate	1	2	1	1	1	2	1	1	1	1	1	1	1
	Plate assembly	1	2	1	1	1	2	1	1	1	1	1	1	1
Primary support :														
Concrete nillar or metal nine														
concrete plint of metal pipe	Construction type	2		1							1	1		
	Ground hardness	1		2							2	1		
	Height	1		0							0	0		
Metal tower	Tower model	1	2		2	-	2	2	-	2				2
	Height (Leclerc tower)	1	2		2	1	Z	2	1	Z			2	2
	Height (Normand tower)	3	2		2	2	2	2	2	6			~	0
	No guy-wires (Normand tower)	2	_		_		-	-		Ŭ				Ō
	Guying quality (Normand tower)	2	2		2		2	0		2				
Secondary support :														
Concrete block or pad on the gro	und													
concrete block of pud of the gro	Construction type	2			2	2				2			1	
	Ground hardness	1			2	2				2			2	
Building		-	_				_	_	_					_
	General structure	2	2				2	2	2					2
	Height of tower base above ground (m)	0.25	3				- -	4 6	6					5
	height of tower base above ground (m)	0,20					Ŭ	Ŭ	Ŭ					5
Whole site														
	Geological site stability	1	3	3	2	2	2	2	2	2	2	2	2	2
	Taraka biliko da ara		20	10	22	1.4	24	27	10	25	0			1.4
	Instability degr	ее (тр) :	28	10	23	14	54	21	10	35	9	ð	12	14
Initial installation														
	Intermediate upgrade													
	Renovation													

Stability assessment: before the renovation (2000/01)

Stability assessment: near the end of the renovation

Distribution of the DORIS equipment

1st generation (1.0 or 1.1) beacon

2nd generation beacon

7 stations

3rd generation beacon

Evolution of the beacon types over 3 years

S Workshop - Venice Lido - March 13-15, 2006

Operation rate over 3 years

Average value: 79%

3rd generation beacons: current status & failures

Status of the 60 delivered beacons

Nature of the 32 failures since delivery

- DORIS + GPS: 37 sites
 - + SLR: 9 sites
 - + VLBI: 7 sites
 - + GPS + SLR: 8 sites
 - + GPS + VLBI: 7 sites
 - + GPS + SLR + VLBI: 2 sites

DORIS-DORIS co-locations

Multiple DORIS occupations are available at 41 sites

DS

Co-locations quality assessment

Principle:

- Evaluate the quality of each co-location with another technique, taking into account:
 - The status of the technique
 - The continuity of the data delivery
 - The distance between DORIS and the other instrument
 - The quality of the available survey
- This results in a quality degree for each technique (the higher the better)
- Sum up the individual degrees, giving a lower weight to the (abundant) GPS co-locations than to the other techniques

--> Co-location Degree (CD) for each antenna

Criteria are evaluated, and CD calculated using a spreadsheet

Results:

- Only the current DORIS occupations have been assessed + two projects
- CD ranges between 0 (no co-location) and 34 (best, four-technique site)

Co-locations quality assessment: examples

Co-located technique	Criteria									Proposed	new sites
CDS		Weight	AMTB	RIPB	TRIB	AREB	SPJB	KESB	GREB	Riyad	Tamanrasset
GPS	Type of GPS station Status Distance (km) Survey quality		0	3 2 0,04 3	0	3 2 0,04 2	3 2 1,58 2	3 2 0,03 3	3 2 0,21 3	3 2 0,05 3	1 2 0,05 2
	GPS assessment	1	0,0	7,8	0,0	6,8	5,7	7,8	7,5	7,8	4,8
SLR	-										
	Continuity Status (ILRS) Distance (km) Survey quality		0	0	0	2 2 <i>0,02</i> 2	0	0	2 2 0,06 3	2 2 0,05 3	1 2 0,05 2
	SLR assessment	2	0,0	0,0	0,0	5,9	0,0	0,0	6,8	6,8	4,8
VLBI	Continuity Status (IVS) Distance (km)		0	0	0	0	2 2 1,48	0	2 2 0,24		
	VI BT assessment	2	0.0	0.0	0.0	0.0	4.8	0.0	65	0.0	0.0
Tide gauge	VEDI USSESSMENT	L	0,0	0,0	0,0	0,0	4,0	0,0	0,5	0,0	0,0
	Data availability Status Distance (km) Survey quality		0	0	3 2 0,12 2	0	0	3 2 3,3 2	0	0	0
	TG assessment	2	0,0	0,0	6,7	0,0	0,0	5,2	0,0	0,0	0,0
	Co-location degr	ee (CD):	0	8	13	19	15	18	34	21	14

Co-locations quality assessment: results

Planned evolutions in 2006

- Remaining renovations:
 - Dionysos: under way, April?
 - Krasnoyarsk: this summer
 - Toulouse: autumn
 - Socorro: pending issue
- New stations in project:
 - Betio (Tarawa, Republic of Kiribati): replacement of Guam, co-location with GPS + tide gauge
 - Rikitea (French Polynesia): replacement of Rapa, co-location with GPS
 + tide gauge
 - Tamanrasset, Algeria (replacement for Arlit): GPS, planned SLR
 - Riyad, Saudi Arabia: SLR + GPS co-location
 - Other projects: Adak, Kiritimati

Planned new stations

