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1 Introduction

This document details the model equations for a complete solution using the Doris raw
phase and pseudo-range measurements, available now at IDS in Rinex format [1]. The
initial Doris phase processing used in precise orbit computations for Jason 2 at CNES was
described in [2]. However, some improvements have been made, it is necessary to clarify
some possible approximations made in the original solution. It is also necessary to allow
the users to construct their own solution, using various approaches (for example, with
directly the phase measurements, or using the phase variations). Also the current users
Doris solutions need to be developed if the user wants to perform its own synchronization
(pseudo-range processing).

The document first details the properties of the phase and pseudo-range Doris measure-
ments, using the approach of [2]. Then some possibilities are explained for the solution
of the measurement equations.

2 Measurements definitions and models

2.1 Single frequency measurements

Phase measurement definition, in meters :

Q = λΦre

= λ(Φr − Φe) + vQ definition equation
(1)

Φre is the rinex phase measurement in cycles (L1 or L2 in the Rinex file). It is the
difference between the receiver reference phase Φr and the phase of the received
signal, which was Φe at the emission event.
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λ = c/f where f is the reference frequency for the considered frequency band (coefficient
to convert the oscillator cycle count in receiver time). This is different from the
’true’ frequency of the oscillator. For Doris, f has values 401.25 or 2036.25 MHz.

vQ is the phase measurement error, the phase measurement noise is a few millimeters.

Phase measurement modelling, in meters :

Q = c((τr + hr) − (τe + he)) + Q0

= c(tr − te) + c(δrel
r − δrel

e ) + c(hr − he) + Q0

= DΦ(tr) + c(δrel
r − δrel

e ) + c(hr − he) + Q0 modelling equation

(2)

τr is the proper time for the receiver, τe is the proper time for the transmitter.

hr is the receiver clock offset (usually it is modelled in Doris as a polynomial expression
in τr). The receiver clock time for the reception event is τr + hr. The difference
between τr + hr and Φr/f is just a bias by definition of the receiver clock. This is
also the case for the difference between τe + he and Φe/f .

t is the coordinate time for the reception (r) or emission events (e).

δrel is the difference between proper time and coordinate time for the receiver or the
transmitter, τ = t + δrel. For the receiver (on board the satellite), it is a frequency
offset with added periodic terms. For the transmitter (ground station), it is just a
frequency offset. The corresponding expressions are shown in the appendix.

Q0 is a common bias including the initial phase and a conventional time offset which may
be present in the definition of the clocks relative to the USOs phase. Q0 remains
constant for a visibility pass when the receiver phase measurement is locked, it is
different for each pass. In case of loss of lock during a pass, the value of Q0 changes
by an integer number of wavelentgh λ.

DΦ(tr) is the propagation time for the phase measurement between the transmitter and
the receiver, expressed in meters, including atmospheric effects, phase centre and
phase maps corrections, phase windup and Shapiro effect. It is a function of tr
(receiver coordinate time).

Pseudo-range measurement expression, in meters :

C = c((τr + hr) − (τe + he)) + vC definition equation (3)

τr is the proper time for the receiver.

τe is here the emission time (proper time) corresponding to the pseudo-range, it is very
close to the corresponding event for the phase.

vC is the pseudo-range measurement error (rms values have a magnitude of several
hundred meters).
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C = DC(tr) + c(δrel
r − δrel

e ) + c(hr − he) modelling equation (4)

DC(tr) is the propagation time between the transmitter and the receiver, expressed in
meters, for the range measurement. It is a function of tr (receiver coordinate time).
The main difference with DΦ(tr) are the ionospheric contribution (opposite sign)
and the phase windup effect which is not present for pseudo-range observables.

δrel
e can be supposed identical for phase and pseudo-range. Also he (which is a function

of τe) is also supposed identical for phase and pseudo-range.

In the equations 4 and 2 there is a contribution of the ionospheric effect different for
each frequency. These contributions are removed by the ’iono-free combination’ of the
measurements and corresponding models, see below.

2.2 Dual frequency case, iono-free combination

The Doris system uses two frequencies to remove the first order ionospheric effect, using
a iono-free combination of the measurements (pseudo-range or phase).

For this dual frequency combination (iono-free combination), the model equations are
similar. The values of τr and tr are all identical for the two frequencies (the receiver
processing is designed for synchroneous measurements). So the values of δrel

r and hr are
identical. For the ground transmitter, the corresponding emission events are not exactly
synchroneous for the two frequencies, but the values of he and δrel

e can be considered
identical for phase and pseudo range on both frequencies. For the geometry (iono-free DC

and DΦ), if we suppose a 100 m differential effect due to iono, this produces a maximal
error in the corresponding emission positions of 0.2 mm, which is negligible.

For the iono-free combinations, we have, with DC or DΦ corresponding to the iono-free
propagations (no iono effect, and use of the iono-free reference phase centres, figure 1,
and Q0 including now all possible hardware biases (inter frequency biases) :

C = DC(tr) + c(δrel
r − δrel

e ) + c(hr − he) pseudo-range

Q = DΦ(tr) + c(δrel
r − δrel

e ) + c(hr − he) + Q0 phase
(5)

The minimal measurement set to be used in the Rinex file is the receiver time τr+hr, and
the corresponding iono-free combinations C obtained from C1 and C2, and Q obtained
from λ1L1 and λ2L2.

This model is valid only for the beacons without K frequency factor. The case of shifted
frequency beacons is detailed in the appendix.
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Fig. 1 – Signal propagation between ground station and satellite (iono-free combinations)

Other data like the clock offset present at the end of the Rinex epoch header (this value
corresponds to hr + δrel

r , due to the synchronisation equations used for pseudo-range
C, which do not have any relativity correction term), or the on board frequency, are
obtained by the Diode navigator, or by the ground post processing. This implies that
some systematic errors or unconsistencies may occur when using these data. However,
these data are useful for simplified solutions, or for validation purposes.

3 Reception coordinate time tr

For a given trajectory of the satellite, expressed in coordinate time, the objective is here
to model correctly the phase measurement DΦ(tr), knowing the values of τr +hr, C and
Q. So we have to estimate tr, with a precision allowing a submillimer modelling (better
than 10−7 m).

hr can only be observed with the pseudo range measurements. Due to the important noise
of the pseudo-range observations C, it is necessary to use a model for hr, a snapshot
solution is not realistic. An other reason is that for standard beacons the value he is
unknown. he is only known for the time reference beacons (he=0 after correction with
the bias and drift given in the Rinex file header), and these beacons are not in permanent
visibility. For the time beacons, the relativity correction δrel

e must be set to 0.

The pseudo range equation 5 can be solved using a polynomial expression in τr for
hr, and a sufficient number of passes on reference beacons (typically more than two
days are used, and a second degree polynomial). Due to the almost linear evolution
between τr and tr, the polynomial is usually expressed in tr to simplify the coefficients
identification.

It is important to notice that in the usual Doris solutions, the term δrel
r is not used in

the pseudo-range equation. This term has a very important drift (frequency bias), and
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small periodic variations (a few centimeters). The periodic variations contributions are
negligible for the reception time estimation. However the drift is not negligible and will
be absorbed in this case by the adjusted polynomial. This means that in this case, for
the phase processing, the relativistic correction δrel

r must be adapted to have no drift
(like in GPS processing, where only the periodic terms are used in the GPS satellite
clock correction).

4 Phase modelling Q

Now, knowing the on board clock offset hr for all reception epochs tr, it is possible to
use the phase equation 5, where the only remaining measurement unknown parameters
are he and Q0 apart from other parameters like zenith troposphere delays or satellite
orbit parameters which contribute to DΦ(tr) and will be adjusted in a global solution.
To obtain information from this equation it is necessary to model he in a certain way,
for example by adding constraints between successive epochs. In standard Doris Dop-
pler processing, the beacon frequencies (or frequencies and drifts) are assumed to be
constant during a pass, and are adjusted per pass. For the phase equation this corres-
ponds to adjust a 1 or 2 degree polynomial function of τe (or te) to represent he. This
was not clearly detailed in [2], the beacon polynomial is defined as a function of tr,
which leads to significative errors in station positioning when the beacon frequency bias
is important.

For the relativistic corrections, the transmitter correction δrel
e is a bias and a drift (the

beacon is fixed on ground), and so is not separable from the he polynomial expression.
It can be corrected a priori, but this is not necessary.

The receiver correction is also mainly a bias and a drift, which cannot be separated
from the polynomial expression of hr as explained above. The periodic terms (due to
eccentricity and J2 contributions) can be modelled. In current Doris POD solutions, they
are set to 0 (millimeter radial effect on the orbits), but are probably not negligible for
station positioning.

Remark : in the current Doris 2.2 measurement file, these relativistic periodic terms
are not taken into account, the on board frequency (derivative of hr, or increments of
successives values of hr) is the only modelled term, as a low degree polynomial. This
was not a problem at the beginning of Doris, but this approach has to be improved,
as for satellites like Cryosat, the complete clock relativistic periodic bias amplitude
contribution can reach 10 centimeters.

Of course, it is also possible to write directly the phase increments equations in Doppler
mode (as it is the case for the standard Doris Doppler processing). The same proper-
ties hold for tr, te, and for the related mean frequencies obtained with the he and hr

variations.
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5 Choice between Doppler or phase processing

The Doppler processing corresponds to construct the difference of the phase equations
from two consecutive epochs. This removes the common bias present in Q0 and he. In this
case, the variations of he and hr correspond to the frequencies, and can be modelized as
polynomials (apart from the relativistic effect for the receiver as explained above).

At the beginnig of the Doris system, the consistency between the receiver clock bias (used
for estimation of tr) and the on board frequency (derivative of hr) was not imposed. In a
first pass, tr was identified for all measurements, using a synchronization signal similar
to a pseudo range, and in a second pass, only the Doppler equations were processed,
using an independent polynomial expression for the receiver frequency.

Now, the phase measurements are available, and the phase equation can be directly
used. However, it is necessary to take into account the remainig modelling errors. The
measurement have an intrinsic noise (a few millimeters for the phase), this noise is uncor-
related between successive epochs. Thus, from this point of view, the phase measurement
equation direct processing is better (with diagonal weightings) : time differentiation for
Doppler will produce correlations between successive measurements.

On the other hand the oscillator polynomial model is not perfect, and the oscillator has
random errors strongly correlated with time (like a random walk). This error, which must
be taken into account in the least squares weighting, is better handled using differences
between successive phase measurements : for example this process minimizes the correla-
tion between successive measurements in the case of a very low measurement noise, and
a random walk for the oscillator. In the current system hardware, the main contributor
to the errors is the oscillator, not the measurement noise. So it is theoretically better to
use the phase variations than the phase (if we use only diagonal weightings).

However, if more sophisticated models are possible for the USO (for example stochastic
models), the phase processing could be very interesting.

6 Possible solutions

We have seen that depending on the hypothesis, different solutions may be used to
process the Rinex files measurements. The objective of this paragraph is to describe
synthetically the possible solutions. Depending on the current software algorithms, some
solutions are probably more suited for a simple implementation.

6.1 Decoupled solutions, USO polynomial models

A decoupled solution consists in solving for hr in a first pass, and then for the remaining
parameters (orbit, stations, ..) using the phase measurements, with known tr values.
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This is the current practice. Different possible configurations are shown table 6.1.

The polynomial P0(tr) represents the hr term (with or without including the relativity
effects, the pseudo-range and phase modelling equations to be used must be consistent
with this hypothesis).

rinex data/solutions A B C

hrinex
r hr = hrinex

r hr = P0(tr)
adjusted on hrinex

r

C hr = P0(tr)
adjusted on C

Q (phase) P1(tr) adjusted P0(tr) fixed P0(tr) fixed
∆Q (Doppler) ∆P1(tr) adjusted ∆P0(tr) fixed ∆P0(tr) fixed

Tab. 1 – Different possible solutions

In table 6.1 the solution C in Doppler mode corresponds to the current solutions used at
CNES to process the Rinex files. The older instruments are processed in a similar way,
except that the model equations are directly constructed in Doppler mode.

Early Doris solutions were a mix between the solution A for the Doppler mode, but
with a synchronisation corresponding to solution C : P0 was not used for the Doppler
processing, a new independent polynomial ∆P1(tr) was used.

The solution A needs a specific polynomial adjustment because the hrinex
r is too noisy

to construct correct phase measurements (the hr value must be very smooth to achieve
directly a phase measurement noise below 1 mm : the precision must be better than 10−12

seconds during a pass). In case of direct processing of the phase (polynomial P1(tr)), the
constant term is undetermined together with the values of the pass biases Q0 (equations
5).

For the synchronisation point of view, solutions A and B are close, the noise in hrinex
r is

sufficiently small to use directly this value for the estimation of tr (however, the relativity
hypotheses must be consistent for the phase processing in case of solution B because P0

is used for the phase processing without any change). Solution A allows different models
between the one which was estimated in the ground segment (for synchronisation use
only), and the models for the phase processing, which give the final performance.

6.2 Coupled solutions, USO polynomial models

If we look at solutions B and C in table 6.1, we see that the estimation of the P0 polyno-
mial may be improved using simultaneously the pseudo-range and phase equations. This
will not change significantly the synchronisation, but may improve the phase processing
by allowing a better separation between ground and on board oscillators. This was not
tested, one possible difficulty is that if the value of hr is too important (this value may

7



D
R
A
F
T

reach 5 s), the initial phase modelling could be very erroneous using a bad a priori for
hr, and may degrade the convergence of the process.

6.3 Other USO models

Usually the USOs (ground and on board) are modelled with polynomials. Better models
(Markov processes) may be used, for example in solutions B or C, where this allows in-
dependent models for the USO mean term behaviour (during a pass, that is 10 minutes),
and the long term behaviour represented by P0 (typically 24 hours or more).

7 Conclusion and recommendations

This document shows the different possibilites which may be used for Rinex Doris data
processing.

The main point is that it is preferred to use a Doppler formulation, by constructing
the differences between successive phase measurements (in the case of USO polynomial
modelling). An advantage of this approach is that the paramerization is identical to the
current parameterizations using Doris 2.2 data. An other advantage is that the passes
management is much easier.

Other formulations are possible, but need further investigations to achieve a correct
performance.

For a simple solution, the receiver clock bias present in the Rinex file can be used
for the synchronisation (construction of the correspondance between receiver time and
coordinate time). However, one must be careful if this information is used also for the on
board frequency estimation (consistency of the modelling hypotheses for the relativity
frequency correction handling, and possible important noise). Using this synchronisation
solution allows probably a correct Doppler solution using the phase variations, with
minor changes in the existing software.
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8 Appendix

8.1 Equations for shifted frequency beacons

The frequency shift is defined by an integer value K, given in the Rinex header [1].
This means that the nominal reference frequency of the beacon is shifted from the
standard system frequency, and can be written as fK = (1 + aK)f with f the nominal
frequency.

The transmission time is constructed using the correct time evolution (that is, is exactly
equivalent to the one obtained with a K = 0 beacon, driven by the same oscillator).

However, this is not the case for the phase measurement, which follows the same mea-
surement equation expressed in cycles as the other beacons (equation 1). In order to be
able to process these measurements in the same way as the standard case (K = 0), the
corrected cycle count Qcorr (in meters) corresponding to the model equations 2 would
be, with the shifted wavelength λK = c/fK :

Qcorr = λΦr − λKΦe

= λK(Φr − Φe) + (λ − λK)Φr

= λK(Φr − Φe) + cΦr

f
aK

1+aK

(6)

The term Φr

f
is proportional to the measured reception time τr +hr, which is directly the

receiver measurement time present in the rinex file. Using this corrected Qcorr expression
for the phase measurement, the shifted frequency beacons can be processed in the same
way as all the other beacons.

8.2 Relativity effects

In this paragraph, we focus on the receiver relativity effect. The objective is to analyze the
periodic terms. The complete effect for two events a and b can be formulated as :

τb − τa =

∫ tb

ta

(1 + 1
c2

(U −

1
2v2))dt

= tb − ta +

∫ tb

ta

1
c2

(U −

1
2v2)dt

(7)

U is the gravitational potential. For the Keplerian case, U = −

µ
||m(t)|| , with m(t) the

position of the receiver at coordinate time t.

v is the velocity (inertial frame).

U −

1
2v2 is evaluated along the trajectory expressed in coordinate time t.
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In equation 8.2, the integration along an orbit will produce a constant drift term (not
perfectly constant with time for long durations, due to drag effects for example). This
long term behaviour will be absorbed in the oscillator polynomial model.

There are different formulations to estimate the remaining periodic term. For GPS
the expression is analytically developed for a Keplerian orbit, and can be expressed
as −2m(t).v(t)

c2
using the actual position and velocity of the satellite. However, this ex-

pression is not precise enough for LEO satellites.

The figures 2 and 3 show the results for the formulations. The formulations are : the
standard GPS correction, estimation of equation with U = −

µ
||m(t)|| , estimation of equa-

tion with U including the J2 effect, and complete potential U . It is necessary to use the
J2 expression for U , and higher order terms have a negligible effect. The contribution is
mainly at the orbital period and twice the orbital period.

Fig. 2 – ∆f/f for Jason 2 , complete (blue), U central term (red), U central term and
J2 (ceil), GPS formula (green)

10



D
R
A
F
T

Fig. 3 – ∆f/f for Cryosat , complete (blue), U central term (red), U central term (ceil)
and J2, GPS formula (green)

11


