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1. BASIC EQUATIONS 

1.1. CONVERSION BETWEEN PROPER TIME   OF A CLOCK AND COORDINATE 

TIME t  

(1) dt
c

V

c

U
d














2

2

2 2
1  

Where: 

U is the gravitational potential at the location of the clock 

V is the velocity of the clock in the coordinate reference frame 

c is the velocity of light in the void 

1.2. TRANSIT TIME OF A PHOTON BETWEEN A POINT OF EMISSION AND A 
POINT OF RECEPTION 

 

Re 
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RR

cc
t ln2
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Where: 

ρ is the curvilinear trajectory of the photon; close at the first order to the geometrical distance 

between the emitter and the receiver 

µ = GM , with G: gravitational constant, M: mass of the Earth 

Re and Rr are the geometrical distance of the emitter (resp. receiver) to the center of the 

reference frame, coincident with the center of mass of the Earth 

In the following, the subscript e will denote the emitter and r the receiver. 
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Equations (1) and (2) are very simplified solutions (assuming in particular 1
c

V
 and 

1
2 2


c

U
) of the Schwarzschild equation: 

(3) )(
),,(2

1
),,(2

1 222
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2 dzdydx
c

zyxU
dtc

c
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


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






  

which is itself a simplification of the Schwarzschild solution for a point outside of the Earth’s 

masses, expressed in isotropic coordinates and in an inertial reference frame having its origin 

at the center of mass of the Earth (Ref. [1]): 
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2. THE DOPPLER OBSERVATION EQUATION 

Let us define the 4 events: 

 Emission of the 1
st
 cycle by the emitter 

’ Reception of the 1
er 

cycle by the receiver 

 Emission of the eN –th
 cycle by the emitter  

’ Reception of the eN -th
 cycle by the receiver 

 

y 

z 

O 

x 

(S) 

1 ’ 2 ’ 
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1 
1  
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N e  Cycles émis Ne Cycles reçus 

Récepteur 

Emetteur 

 

The events are time-tagged 
1e

 , 
2e  in the emitter proper time scale, 

'2'1
, rr   in the receiver 

proper time scale and '22'11 ,,, tttt  in the coordinate time in the reference frame (S). Here the 

coordinate time that is considered is TCG (Geocentric Coordinate Time). TCG differs from 
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the old TT scale and from TAI by a constant rate (1 + LG), with 

10

2
10969290134.6 

c

U
L GEO

G
 (cf. IERS conventions 2010, chapters 1 and 10, ref [2]). 

During the proper time interval 
'1'2 rrr   , the receiver has received the eN  cycles sent 

by the emitter, with eee fN  , ef  being the proper frequency of the emitter. The receiver is 

also equipped with an oscillator and during the proper time interval r , it has generated a 

number rrr fN   of cycles, rf  being the proper frequency of the receiver. The Doppler 

measurement is the count, by the receiver electronics, of the number of cycles of difference 

between eN  and rN : 

reDOP NNN   => rreeDOP ffN    

In the RINEX files, this Doppler count is the difference between two phase measurements 

done at different time tags in the proper time of the receiver. 

Let us express e  as a function of r , using coordinate time as an intermediary: 

)(
2

1 122
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212
tt
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
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



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   from (1), assuming eU et eV are constant over 

)( 12 tt   

We have : 
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2
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2

1   from (1), assuming rU et rV  are constant over 

)( 12   ; that is to say, in the case of an upward 

Doppler, for small orbit excentricities. 















1'11

1'11

3

1
1'1 ln

2





RR

RR

c

GM

c
tt   from (2) 

Therefore: 

rrr
rree

eDOP f
RR

RR

RR

RR

c

GM

cc

V

c

U

c

V

c

U
fN 








 












































































2'22

2'22

1'11

1'11

3

12

2

2

22

2

2
lnln2

2
1

2
1

 



 

DORIS_RINEX_implementation_in_GINS.v2.0.doc 

6 

The above formula can be simplified in the terrestrial case, where 1
c

V
 and 1

2 2


c

U
. 

After these simplifications, which are not detailed here, we obtain the equations (4) that are 

used in GINS: 

(4) 

RELTROPOIONO

r

DOP
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2

2

2 2
1  

Where: 

 the subscripts e denote the emitter and r the receiver; 

 the subscripts N denote the nominal and T the true frequency; 

 measuredv  is the measured relative velocity between the emitter and the receiver between the 

events 1’) and 2’), based on the Doppler count NDOP, corrected for the ionospheric, 

tropospheric and relativistic effects; 

 theov  is the theoretical (or computed) velocity between the emitter and the receiver between 

the events 1’) and 2’), corrected for a solved-for frequency bias per pass 

Ne

e

f

f
 of the emitter; 

 rrr fff
NT

  is an estimate of the true proper frequency of the receiver based either on a 

polynomial regression over the frequency offsets estimated during the passes over the master 
beacons (which have a quasi-nil proper frequency offset), or from the receiver frequency 

estimates found in the RINEX files. Beware: in that case the frequency estimation is not 

smooth enough, and a linear (or polynomial) interpolation has to be done between the first and 
last value of the RINEX file. 

 Ur and Ue are the gravitational potential of resp. the receiver and the emitter 

 
TH RELRELREL VVV   is the relativistic correction which is composed of two parts, the 

clock correction 
HRELV  and the transit correction 

TRELV : 

o 
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IMPORTANT REMARKS: 

a) Correction of aberration: ρα is the geometrical distance between the emitter at time 

tα and the receiver at time tα’. Since the measurements are made by the receiver, only 

tα’ is known. Therefore in order to compute accurately tα and thus the position of the 

emitter at this time, a correction of aberration has to be done. It consists in computing 

an approximate value of the emitter-receiver distance ρ
*
α by evaluating the position of 

the emitter at time tα’, then determining tα by applying the correction: 
c

tt




*

'  . 

The process can be iterated but in general this is not necessary. 

b) Time scales: The orbit computations are performed in a coordinate time, the TAI, 

which is equivalent, on the geoid, to the TCG (TAI = (1-LG) TCG). The time interval 

that appears in equations (4) is an interval of onboard proper time. It is therefore very 

important to know in which time scale the measurements are provided. In the case of 

the RINEX DORIS, the measurements are supposed to be given in TAI. In fact, 

considering how the time-tagging is done by the DORIS project (see in particular ref. 

[3]), they are given in a kind of scaled proper time (let’s call it τDOR) . The proper 

onboard time τr is scaled by a low-degree polynomial in such a way that on the long 

run (i.e. for periods > 1 day) τDOR remains coherent with TAI. This absorbs the slowly 

varying receiver frequency offset rf . But the relativistic fluctuations of τDOR with 

respect to TAI due to the orbit eccentricity are not taken into account. The rigorous 

conversion between receiver proper time and TAI is: 
TAIG

rr
r tL

c

V

c

U











2

2

2 2
1  

c) Ionospheric correction: In the RINEX files, the ionospheric correction has to be done 

by the users. A first-order iono-free measurement is built by combining the 400 MHz 

and 2 GHz measurements in the following way:  

 
1

4002








 MHzGHz

freeiono

DD
D  

Where  2GHzD  and 
MHzD400

 are the pseudo distance measurements on 2 GHz and 400 

MHz, and γ is the square of the frequency ratio: 

2

400

2 











MHz

GHz

f

f
 .  

Converting to iono-free phase measurement on the 2 GHz channel using: 

MHzMHzMHzGHzGHzGHzGHzfreeionoGHzfreeiono LDLDLD 40040040022222 * and * ,*     

One gets : 

11

 

4002
2

4002
2

















 MHzGHz
GHz

MHzGHz
GHzfreeiono

LL
L

LL
L

 

Where: 

 L2GHz is the phase measurement on 2 GHz 

 L400MHz is the phase measurement on 400 MHz 
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When using these measurements, the 2 GHz phase centers can no longer be used as 

the end points of the measurement, the iono-free phase centers have to be used. The 

coordinates of the iono-free phase centers are given by the following formula: 

1

2,400

,2





GHzMHz

freeionoGHz

r
r




 

Where: 

 freeionoGHzr ,2


 is the vector from the 2 GHz phase center to the iono-free phase center 

 GHzMHzr 2,400


 is the vector from the 400 MHz to the 2 GHz phase center 

 

In the case of DORIS, GHz 036250.22 GHzf , MHz 250.401400 MHzf , therefore 

75325356.25  and the iono-free phase centers are located a few mm away from the 

2 GHz phase centers, in the direction opposite to the 400 MHz phase centers. The 

following table gives the phase center vectors for the different antennas (grey denotes 

the satellites and ground antennas for which there is no RINEX data; in that case the 

use of the iono-free phase center is not pertinent since a correction was introduced in 

the iono correction of the DORIS 2.1 and 2.2 measurements in order bring back the 

measurements to the 2 GHz phase centers): 

Unit = mm 
Ref. point 

– 400 MHz 

Ref. point 

– 2 GHz 

400 MHz – 

2 GHz 

2 GHz – 

iono-free 

Ref. point 

– iono-free 

ALCATEL satellite 

antenna (SPOT-2) 
160 355 195 8 363 

STAREC satellite 

antenna (SPOT-3) 
152 315 163 6 321 

STAREC satellite 

antenna (SPOT-4) 
155 316 161 6 322 

STAREC satellite 

antenna (SPOT-5) 
153 315 162 6 321 

STAREC satellite 

antenna (TOPEX) 
161 317 156 6 323 

STAREC satellite 

antenna (ENVISAT) 
153 318 165 6 324 

STAREC satellite 

antenna (Jason-1) 
156 324 168 7 331 

STAREC satellite 

antenna (Jason-2) 
155 319 164 6 325 

STAREC satellite 

antenna (Cryosat-2) 
158 312 154 6 318 

STAREC satellite 

antenna (HY-2A) 
154 316 162 6 322 

STAREC satellite 

antenna (SARAL) 
156 314 158 6 320 

ALCATEL ground 335 510 175 7 517 
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antenna 

STAREC ground 

antenna 
0 487 487 19 506 

 

d) Emitter frequency bias: In the computation of the effect of the emitter relative 

frequency offset, 1


Ne

e

f

f
 has been assumed; therefore all terms in 

2

Ne

e

f

f
 and 

2

2

Ne

e

f

f
 

have been neglected. 

e) Small terms: In equations (4), the smallest terms are 









2

2

2 2
1

c

V

c

U ee and 
TRELV . In 

the case of DORIS, they amount to maximum 11 and 6. 10
-6

 m/s respectively. 

Furthermore, since the emitters are located on ground, 









2

2

2 2
1

c

V

c

U ee  is constant per 

station. It is equivalent to a small frequency offset that will be absorbed by the 

adjustment of 

Ne

e

f

f
. So equations (4) can still be simplified: 

(5) 
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N
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