Surface Water and Ocean Topography (SWOT) Project

SWOT Product Description Long Name: Reconstructed Attitude Product Short Name: ATTD_RECONST

Prepared by:

21-Dec-18 21-Dec-18 Shailen Desai **Bertrand Raffier** JPL Algorithm Engineer **CNES AOCS Architect** Approved by: DOMO 7-Jan-2019 21-Dec-18 Curtis Chen Date Nathalie Steunou JPL Algorithm System **CNES** Algorithm System Engineer Engineer Concurred by: chinkwoun 7-Jan-2019 14-Jan-19 Oh-Ig Kwoun Date Hélène Vadon Date JPL SDS Manager **CNES SDS Manager** Paper copies of this document may not be current and should not be relied on for official purposes. The

Paper copies of this document may not be current and should not be relied on for official purposes. The current version is in the JPL Product Data Management System (EPDM: <u>https://epdm.jpl.nasa.gov</u>) and the CNES Product Data Management System

December 6, 2018

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Version 1.0 SWOT-IS-CDM-0684-CNES

CHANGE LOG

VERSION	DATE	SECTIONS CHANGED	REASON FOR CHANGE
Baseline	2018-12-06	ALL	Initial Release

Table of Contents

CHANGE LOG
Table of Contents
Table of Figures4
Table of Tables
List of TBC Items
List of TBD Items
1 Introduction .7 1.1 Purpose .7 1.2 Document Organization .7
2 Product Description
3Product Structure93.1Granule Definition93.2File Organization93.3File Naming Convention93.4Spatial Sampling and Resolution93.5Temporal Organization93.6Spatial Organization103.7Volume10
4Qualitative Description
5Detailed Product Description145.1NetCDF Variables145.2Reconstructed Attitude File155.2.1Global Attributes155.2.2Dimensions165.2.3Variables16
6 References 18
Appendix A. Acronyms19

Table of Figures

SWOT-IS-CDM-0684-CNES Version 1.0

December 6, 2018

Table of Tables

TABLE 1. DESCRIPTION OF FILE COMPRISING THE ATTD_RECONST PRODUCT	9
TABLE 2. DESCRIPTION OF DATA VOLUME OF EACH FILE OF ATTD_RECONST PRODUCT.	10
TABLE 3. VARIABLE DATA TYPES IN NETCDF PRODUCT.	
TABLE 4. COMMON VARIABLE ATTRIBUTES IN NETCDF FILE.	14
TABLE 5. GLOBAL ATTRIBUTES OF ATTD_RECONST PRODUCT	15
TABLE 6. DIMENSIONS USED IN ATTD_RECONST PRODUCT	
TABLE 7. VARIABLES IN ATTD_RECONST PRODUCT.	

List of TBC Items

These items are to be completed when document is ready to enter configuration control.

Page	Section
9	3.3. File Naming Convention

List of TBD Items

These items are to be completed when document is ready to enter configuration control.

Page	Section

1 Introduction

1.1 Purpose

The purpose of this Product Description Document is to describe the Reconstructed Attitude science data product from the Surface Water Ocean Topography (SWOT) mission. This data product is also referenced by the short name ATTD_RECONST. It is generated by blending data from the payload gyro and the spacecraft star tracker to provide an accurate measure of satellite attitude that will be used for KaRIn, Radiometer, and Precise Orbit Determination (POD) processing.

1.2 Document Organization

Section 2 provides a general description of the product, including its purpose, and latency.

Section 3 provides the structure of the product, including granule definition, file organization, spatial resolution, temporal and spatial organization of the content, the size and data volume.

Section 4 provides qualitative descriptions of the information provided in the product.

Section 5 provides a detailed identification of the individual fields within the ATTD_RECONST product, including for example their units, size, coordinates, etc.

Section 6 provides references for this product.

Appendix A provides a listing of the acronyms used in this document.

2 **Product Description**

2.1 Purpose

The ATTD_RECONST product is generated in response to SWOT project science requirements described in [1]. It is aimed towards providing an accurate measure of the SWOT spacecraft attitude. The product uses quaternions to represent the attitude of the spacecraft body-fixed KaRIn Metering Structure Reference Frame with respect to the inertial Geocentric Celestial Reference Frame. This product is used for processing of the KaRIn and radiometer science data, and to perform precise orbit determination of the spacecraft. The data in this product are generated by blending data from the onboard gyro and star tracker.

2.2 Latency

The ATTD_RECONST product is generated with a latency of less than 1.5 days from data collection. Typically, star tracker and gyro data from day D will be available early on day D+1. Reprocessed versions of this product may be generated through the life of the SWOT mission.

3 Product Structure

3.1 Granule Definition

The ATTD_RECONST product is organized into daily files, spanning 26 hours and centered at 12:00:00 (UTC) of each day (i.e. from day D-1 23:00 to day D+1 01:00).

3.2 File Organization

The ATTD_RECONST product adopts the NetCDF file format. Each product granule is provided as a single file as shown in Table 1. Each file contains a time series of quaternions and associated quality flags.

File	Name	Description
1	Reconstruct Attitude Product	Provides quaternions to represent the rotation
		between the spacecraft body-fixed KaRIn Metering
		Structure Reference Frame and the inertial
		Geocentric Celestial Reference Frame.

3.3 File Naming Convention

The name of each ATTD_RECONST product follows the general SWOT product naming convention and is as follows (TBC):

 $SWOT_ATTD_RECONST_<StartDateTime>_<EndDateTime>_<CRID>_<ProductCounter>.nc$

where:

- CRID is the Composite Release Identifier
- ProductCounter is to version data products generated multiple times
- Start and End date times follows format YYYYMMDDThhmmss

An example of a file name with data centered on 2021-06-12 12:00:00 (UTC) is as follows:

SWOT_ATTD_RECONST_20210611T230000_20210613T010000_PGA000_01.nc

3.4 Spatial Sampling and Resolution

The time series of quaternions provided in the ATTD_RECONST product has no spatial dependencies.

3.5 Temporal Organization

The sequential time series of quaternions is typically provided with a sampling interval of 15.625 ms (i.e., 64 Hz).

3.6 Spatial Organization

The ATTD_RECONST product does not have any spatial dependencies.

3.7 Volume

Table 2 provides the expected volume of each daily ATTD_RECONST file granule. The provided data product volume is conservative since the NetCDF binary format that compresses the data is used for the product. Each data record is comprised of 52 bytes and 5990400 data records are expected in each daily file.

Table 2. Description of Data Volume of Each File of ATTD_RECONST product.

File	Name	Volume/Granule (GB/day)
1	Reconstructed Attitude Daily File	0.3115

4 **Qualitative Description**

Each ATTD_RECONST file contains global metadata, followed by the time series of time tags, quaternions, and associated quality flags.

4.1 Reconstructed Attitude File

4.1.1 Time and Location

Time tags for each measurement data record are provided in the UTC and TAI time scales using the variables *time* and *time_tai*, respectively.

- *time*: Time in UTC time scale (seconds since January 1, 2000 00:00:00 UTC which is equivalent to January 1, 2000 00:00:32 TAI)
- *time_tai*: Time in TAI time scale (seconds since January 1, 2000 00:00:00 TAI, which is equivalent to December 31, 1999 23:59:28 UTC)

The variable *time* has an attribute named *tai_utc_difference*, which represents the difference between TAI and UTC (i.e., total number of leap seconds) at the time of the first measurement record in the product granule.

• *time_tai[0] = time[0] + tai_utc_difference*

The above relationship holds true for all measurement records unless an additional leap second occurs within the time span of the product granule. To account for this, the variable *time* also has an attribute named *leap_second* which provides the date at which a leap second might have occurred within the time span of the product granule. The variable *time* will exhibit a jump when a leap second occurs. If no additional leap second occurs within the time span of the product granule *time* the time span of the product granule *time* within the time span of the product granule *time* within the time span of the product granule time span of the product granule *time* time span of the product granule *time* span of the product granule *time* span of the product granule *time* span of the product granule time span of

The table below provides some examples for the values of *time*, *time_tai*, and *tai_utc_difference*. With this approach, the value of *time* will have a 1 second regression during a leap second transition, while *time_tai* will be continuous. That is, when a positive leap second is inserted, two different instances will have the same value for the variable *time*, making time non-unique by itself; the difference between *time* and *time_tai*, or the *tai_utc_difference* and *leap_second* fields, can be used to resolve this. Some examples are provided in the table below.

UTC Date	TAI Date	time	time_tai	tai_utc_difference
January 1, 2000 00:00:00	January 1, 2000 00:00:32	0.0	32.0	32
December 31, 2016 23:59:59	January 1, 2017 00:00:35	536543999.0	536544035.0	36
December 31, 2016 23:59:59.5	January 1, 2017 00:00:35.5	536543999.5	536544035.5	36
December 31, 2016 23:59:60	January 1, 2017 00:00:36	536543999.0	536544036.0	37
January 1, 2017 00:00:00	January 1, 2017 00:00:37	536544000.0	536544037.0	37
January 1, 2017 12:00:00	January 1, 2017 12:00:37	536587200.0	536587237.0	37

Locations are not provided with each time tag.

4.1.2 Quality Flags

The following quality flag is provided for each time tag, and is provided for each of the four elements of the quaternion at each epoch. This flag has a value of 0 for "good" and 1 for "bad".

• *quaternion_qual*: quality flag for each of the four quaternions.

This quality flag reflects issues that degrade the performance of the reported quaternions. These issues include:

- Missing input data
- Anomalous input data
- Algorithm issues

4.1.3 Attitude Measurements

Reconstructed attitude measurements are provided as quaternions at each time tag.

• *quaternion*: Four-dimensional variable that represents the attitude of the spacecraft body-fixed KaRIn Metering Structure Reference Frame (KMSF) with respect to the inertial Geocentric Celestial Reference Frame (GCRF).

The quaternion vector that relates the KMSF and GCRF is denoted $Q_{GCRF \rightarrow KMSF}$, where:

$$Q_{GCRF \to KMSF} = \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix} \tag{1}$$

The four-dimensional variable *quaternion* that is provided at each time tag then represents q_0, q_1, q_2 , and q_3 , with q_0 being the real (scalar) part. These quaternions can then be used to construct the rotation matrix $M_{GCRF \to KMSF}$ as represented in equation (2) below.

$$M_{GCRF \to KMSF} = \begin{bmatrix} 2(q_0^2 + q_1^2) - 1 & 2(q_1q_2 - q_0q_3) & 2(q_1q_3 + q_0q_2) \\ 2(q_1q_2 + q_0q_3) & 2(q_0^2 + q_2^2) - 1 & 2(q_2q_3 - q_0q_1) \\ 2(q_1q_3 - q_0q_2) & 2(q_2q_3 + q_0q_1) & 2(q_0^2 + q_3^2) - 1 \end{bmatrix}$$
(2)

The rotation matrix $M_{GCRF \rightarrow KMSF}$ represents the rotation that transforms the GCRF to the KMSF. As such, a vector with coordinates x^{GCRF} in the GCRF, and x^{KMSF} in the KMSF, are then related as shown in equations (3) and (4) below.

$$x^{GCRF} = M_{GCRF \to KMSF} \cdot x^{KMSF} \tag{3}$$

$$x^{KMSF} = M^T_{GCRF \to KMSF} \cdot x^{GCRF} \tag{4}$$

The KMSF is illustrated in Figure 1 below and defined in [2]. The KMSF is a spacecraft body-fixed coordinate system that is defined from the physical SWOT hardware on the KaRIn Metering Structure. This coordinate system has its Z axis oriented towards nadir, Y axis along the KaRIn mast, and X axis completing the right-handed coordinate system.

Also shown in Figure 1 is the KaRIn Baseline Frame (KBF). The KBF is the frame that the SWOT spacecraft intends to align with the local nadir track compensation target, with its Y axis aligned with the actual baseline (between the centers of phase of the KaRIn antenns). The offset

and rotation between the KMSF and KBF are measured before launch and updated once during the KaRIn checkout phase soon after launch. This transformation is used by KaRIn science data processing.

The KMSF serves as the reference body-fixed fixed frame for various ground processing as follows.

- The origin of the KMSF serves as the reference to define the various reference points that are required for precise orbit determination (POD) processing (e.g., antenna phase center, satellite center of mass, etc).
- The orientation of the body-fixed frame (e.g., KMSF) with respect to the inertial frame (e.g., GCRF) is required for POD processing.
- The orientation of the body-fixed frame (e.g., KMSF) with respect to the International Terrestrial Reference Frame (ITRF) is required for KaRIn and radiometer processing to correctly orient their respective measurements. This orientation is construct by using the combination of the quaternions provided in this product that relate the KMSF and GCRF and a separate quaternion product described in [3] that defines the orientation of the ITRF with respect to the GCRF. The quaternions that relate the ITRF and GCRF are generated during POD processing of the Medium-Accuracy Orbit Ephemeris (MOE) and Precise Orbit Ephemeris ([4]).

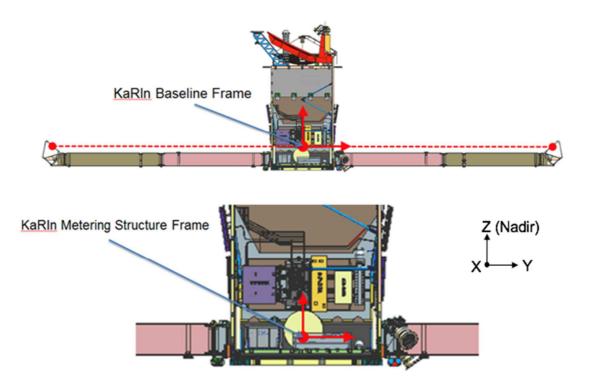


Figure 1. Illustration of the SWOT body-fixed reference frames.

5 Detailed Product Description

5.1 NetCDF Variables

Variables are used to store the various measurements. Each variable is assigned a name and a particular data type. Variables can be scalar values (i.e. 0 dimension), or can have one or more dimensions. Each variable then has attributes that provide additional information about the variable. Descriptions of variables data types and variable attributes are provided in Table 3 and Table 4 below, respectively.

Data Type	Description	
char	characters	
byte	8-bit signed integer	
unsigned byte	8-bit unsigned integer	
short	16-bit signed integer	
unsigned short	16-bit unsigned integer	
int	32-bit signed integer	
unsigned int	32-bit unsigned integer	
long	64-bit signed integer	
unsigned long	64-bit unsigned integer	
float	IEEE single precision floating point (32 bits)	
double	IEEE double precision floating point (64 bits)	

Table 3. Variable data types in NetCDF product.

Table 4. Common	n variable attributes	in NetCDF file.
-----------------	-----------------------	-----------------

Attribute	Description
_FillValue	The value used to represent missing or undefined data. (Before applying
	add_offset and scale_factor).
add_offset	If present this value should be added to each data element after it is read. If
	both scale_factor and add_offset attributes are present, the data are first
	scaled before the offset is added.
calendar	Reference time calendar
comment	Miscellaneous information about the data or the methods to generate it.
coordinates	Coordinate variables associated with the variable
flag_meanings	Used in conjunction with flag_values. Describes the meanings of each of the
	elements of flag_values.
flag_values.	Used in conjunction with flag_meanings. Posssible values of the flag variable.
institution	Institution which generates the source data for the variable, if applicable.
leap_second	UTC time at which a leap second occurs within the time span of data within the file.
long_name	A descriptive variable name that indicates its content.
quality_flag	Names of variable quality flag(s) that are associated with this variable to
	indicate its quality.
scale_factor	If present, the data are to be multiplied by the value after they are read. If both
	scale_factor and add_offset attributes are present, the data are first scaled
	before the offset is added.
source	Data source (model, author, or instrument)
standard_name	A standard variable name that indicates its content.
tai_utc_difference	Difference between TAI and UTC reference time.
units	Unit of data after applying offset (add_offset) and scale_factor.

valid_max	Maximum theoretical value of variable before applying scale_factor and
	add_offset (not necessarily the same as maximum value of actual data)
valid_min	Minimum theoretical value of variable before applying scale_factor and
	add_offset (not necessarily the same as minimum value of actual data)

5.2 Reconstructed Attitude File

5.2.1 Global Attributes

Global attributes for the ATTD_RECONST product are provided in Table 5 below.

Attribute	Format	Description
Conventions	string	NetCDF-4 conventions adopted in this product. This attribute should be set to CF-1.7 to indicate that the
		group is compliant with the Climate and Forecast
		NetCDF conventions.
title	string	A descriptive title for the data product, e.g., "SWOT Reconstructed Attitude Product".
institution	string	Name of producing agency, e.g., "CNES".
source	string	The method of production of the original data. If it
304100	Sung	was model-generated, source should name the
		model and its version, as specifically as could be
		useful. If it is observational, source should
		characterize it (e.g., "SWOT Payload Gyro and Star
		Trackers").
history	string	UTC time when file generated. Format is: "YYYY-
		MM-DD hh:mm:ss : Creation"
mission_name	string	"SWOT"
references	string	Published or web-based references that describe
		the data or methods used to product it. Provides
		version number of software generating product.
reference_document	string	Name and version of Product Description Document
		to use as reference for product.
contact	string	Contact information for producer of product. (e.g.,
		"ops@cnes.fr").
first_measurement_time	string	UTC time of first quaternion within the product.
		Format is: YYYY-MM-DDThh:mm:ss.sssssZ
last_measurement_time	string	UTC time of last quaternion within the product.
		Format is: YYYY-MM-DDThh:mm:ss.sssssZ
ref_frame_A	string	The name of the reference frame specifying the first
		frame of the transformation, e.g., GCRF.
ref_frame_B	string	The name of the reference frame specifying the
		second frame of the transformation, e.g., KMSF.
attitude_direction	string	Direction of rotation from provided quaternions, e.g.,
		A2B as indicated in equations (1) and (2).
		A2B indicates a rotation from ref_frame_A to
		ref_frame_B
		B2A indicates a rotation from ref_frame_B to

Table 5. Global attributes of ATTD_RECONST product.

		ref_frame_A.
xref_gyro_files	string	List of input GYRO measurement files
xref_star_tracker_files	string	List of input star tracker files

5.2.2 Dimensions

The dimensions that are used for the variables in the ATTD_RECONST product are provided in Table 6 below.

Table 6. Dimensions used in ATTD_RECONST product.

Dimension Name	Value
time	Number of measurement records in product.
quatdim	Dimension of quaternion vector at each epoch. Should always have a value of 4.

5.2.3 Variables

Variables in the ATTD_RECONST product with their respective attributes are provided in Table 7 below.

Global Variables	
double time(time)	
_FillValue	9.9692099683868690e+36
long_name	time in UTC
standard_name	time
calendar	gregorian
tai_utc_difference	[Value of TAI-UTC at time of first record]
leap_second	YYYY-MM-DD hh:mm:ss
units	seconds since 2000-01-01 00:00:00.0
comment	time of measurement in seconds in the UTC time scale since 1 Jan 2000 00:00:00 UTC. [tai_utc_difference] is the difference between TAI and UTC reference time (seconds) for the first measurement of the data set. If a leap second occurs within the data set, the attribute leap_second is set to the UTC time at which the leap second occurs.
double time_tai(time)	
FillValue	9.9692099683868690e+36
long_name	time in TAI
standard_name	time
calendar	gregorian
units	seconds since 2000-01-01 00:00:00.0
comment	time of measurement in seconds in the TAI time scale since 1 Jan 2000 00:00:00 TAI. This time scale contains no leap seconds. The difference (in seconds) with time in UTC is given by the attribute [time:tai_utc_difference].
double quaternion(time, quatdim)	
_FillValue	9.9692099683868690e+36
long_name	quaternion
units	1
scale_factor	1.0e0
quality_flag	quaternion_qual
valid_max	1.0

Table 7. Variables in ATTD_RECONST product.

SWOT-IS-CDM-0684-CNES Version 1.0

December 6, 2018

valid_min	-1.0
comment	Four elements of quaternion that is used to construct the rotation matrix with direction indicated by global attribute attitude_direction. Index 0 corresponds to real (scalar) component.
byte quaternion_qual(time, quatdim)	
_FillValue	127
long_name	quality flag for quaternion
standard_name	status_flag
flag_meanings	good; bad
flag_values	0, 1
valid_min	0
valid_max	1
comment	Quality flag for each of the four elements of the quaternion.

6 References

- S. D. Desai, "SWOT Science Requirements Document, JPL D-61923," Jet Propulsion Laboratory, 2018.
- [2] F. I. Last, "SWOT Level 2 coordinate systems and conventions specification, SWOT-TS-SYS-434-CNES," CNES, Toulouse, 2019.
- [3] F. Last, "SWOT Product Description Document: Precise and Intermediate GCRF to ITRF quaternion data product, SWOT-IS-CDM-1072-CNES," CNES, Toulouse, 2019.
- [4] F. I. Last, "SWOT Product Description Document: Precision and Medium-accuracy Orbit Ephemeris Data Product, SWOT-IS-CDM-0658-CNES," CNES, Toulouse, 2019.

SWOT-IS-CDM-0684-CNES Version 1.0

December 6, 2018

Appendix A. Acronyms

ATBD	Algorithm Theoretical Basis Document
CNES	Centre National d'Études Spatiales
GCRF	Geocentric Celestial Reference Frame
JPL	Jet Propulsion Laboratory
KBF	KaRIn Baseline Frame
KMSF	KaRIn Metering Structure Reference Frame
MOE	Medium-Accuracy Orbit Ephemeris
NASA	National Aeronautics and Space Administration
POD	Precise Orbit Determination
POE	Precise Orbit Ephemeris
SWOT	Surface Water Ocean Topography
TBC	To Be Confirmed
TBD	To Be Determined

DISTRIBUTION

JPL	CNES
VAZE Parag	LAFON Thierry
CRUZ Jennifer	ALBOUYS Vincent
DESAI Shailen	PICOT Nicolas
KWOUN Oh-Ig	STEUNOU Nathalie
CHEN Curtis	FJORTOFT Roger
STILES Bryan	RAFFIER Bertrand
BROWN Shannon	MORENO Sabine
WU Xiaoqing	VADON Hélène
	GARCIA Charlotte
	COUSTANCE Sophie