

VLBI - DORIS compatibility tests at the Geodetic Observatory Wettzell

Thomas Klügel, Swetlana Mähler, Christian Plötz, Gerhard Kronschnabl, Torben Schüler Bundesamt für Kartographie und Geodäsie

> Jan Kodet, Alexander Neidhardt Technische Universität München

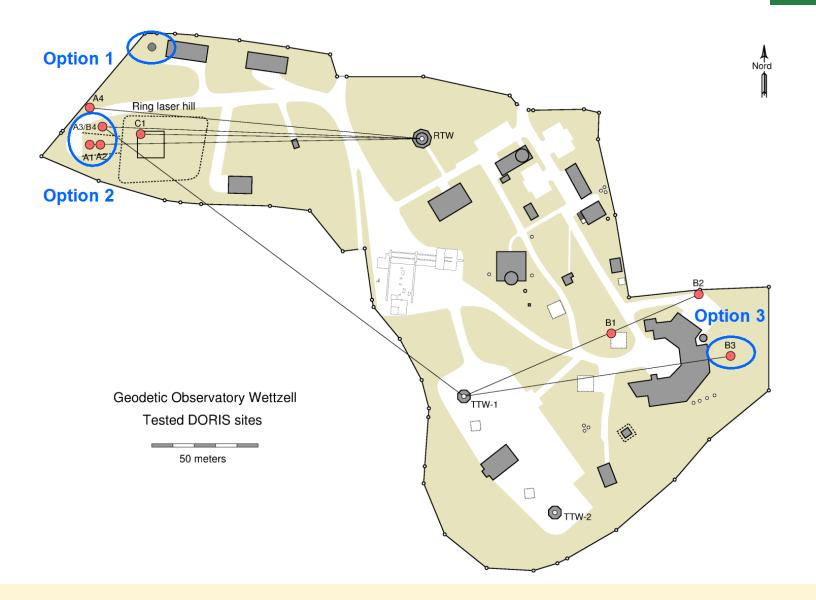
Jerôme Saunier, Jean-Claude Poyard Institut National de l'Information Géographique et Forestière

> Francois Didelot, Jean-Marc Walter Centre National d'Etudes Spatiales

IDS workshop, La Rochelle, France, 31 October - 01 November 2016

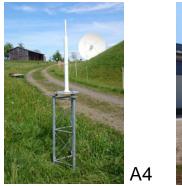
DORIS at Wettzell

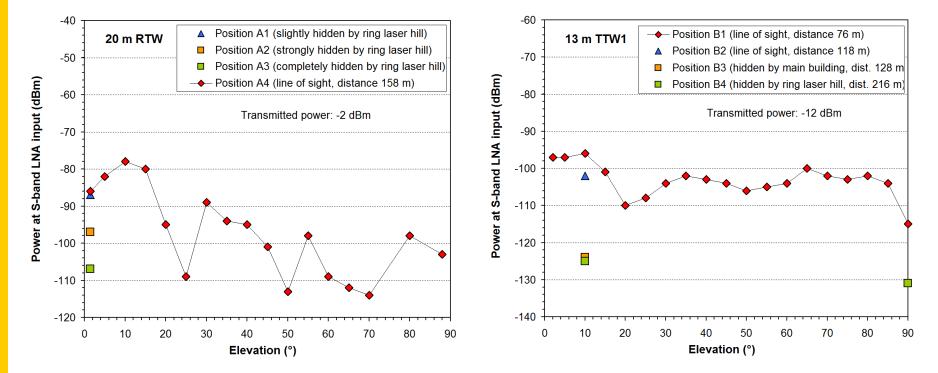
- 2003: First operation
 - 03.2003 01.2004
 - Always stand-by during VLBI operation
- 2014: New IDS goals
 - Contribution to GGOS
 - Intensify scientific cooperation
 - Wettzell as co-location IDS station
- 2014 2015: Site investigation
 - Check different locations
 - Cooperation agreement CNES/IGN/BKG
 - Frequency clearance
 - DORIS-VLBI compatibility tests
- June 2016: Long term test
 - Check quality of DORIS and VLBI data
- Since Sept. 2016: Operation in nominal mode


Possible RFI with VLBI in S-Band

Problem

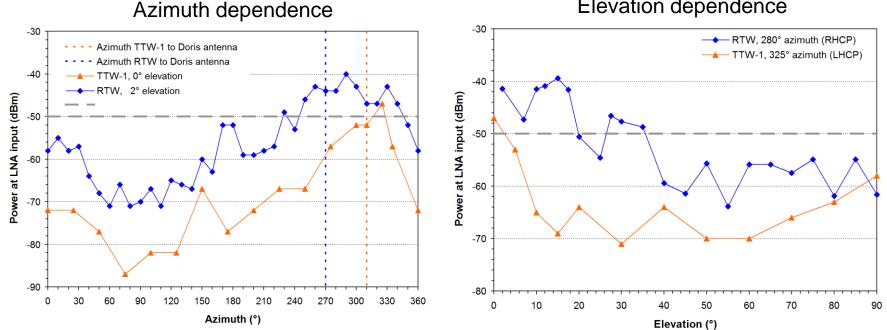
- Power of astronomical radio sources at the input of the VLBI receiving system: about -110 dBm
- DORIS emission power (2 GHz): 40 dBm
- LNAs (Low Noise Amplifiers) saturate at -40 ... -50 dBm
- LNAs will be destroyed at –10 dBm
- Solutions
 - Big distance between antennas (Metsähovi, Hartebeesthoek) (contradicts principle of co-location sites)
 - Obstacles/RF-blockers between DORIS- and VLBI-antennas (Greenbelt)


Explored and tested sites



First test with low power

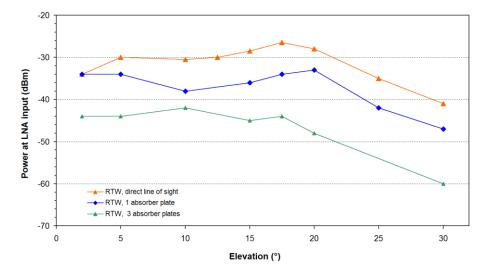
- Signal generator at DORIS antenna, 2036 MHz
- Transmitted power -2 / -12 dBm
- Spectrum analyzer at VLBI antenna waveguide
- Site investigations (effect of distance, obstacles)
- Different elevations of VLBI antenna



Second test under real conditions

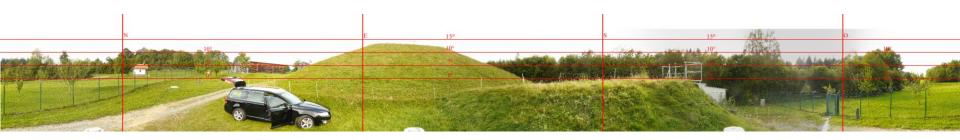
- DORIS Beacon (+40 dBm at 2036 MHz)
- Site A3
 - 155 m to RTW
 - 215 m to TTW-1
- Varying VLBI telescope orientation

Elevation dependence



Second test: absorber plates

- 0, 1 or 3 absorber plates, type COMTEST MT65
- Site C1 (on top of hill, 130 m dist.)
- 20 m RTW pointing towards DORIS antenna, below main lobe

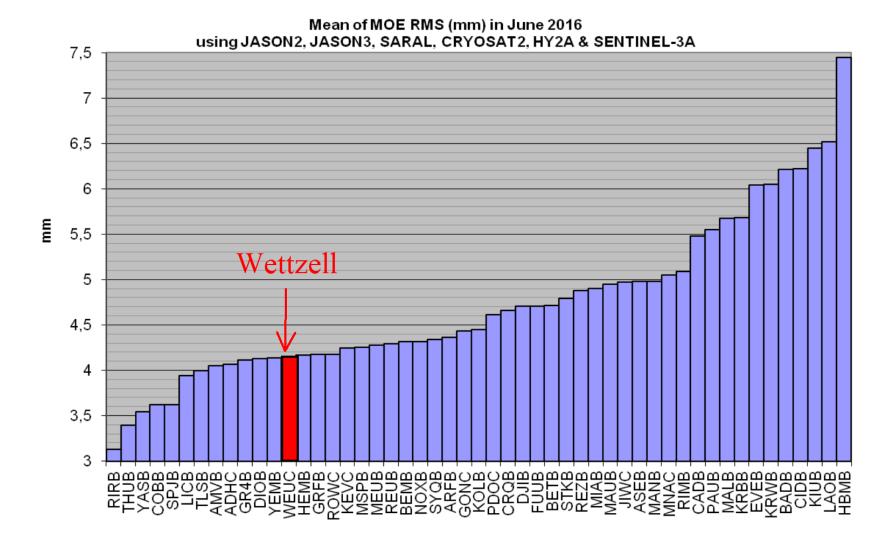


Long term test (1 month)

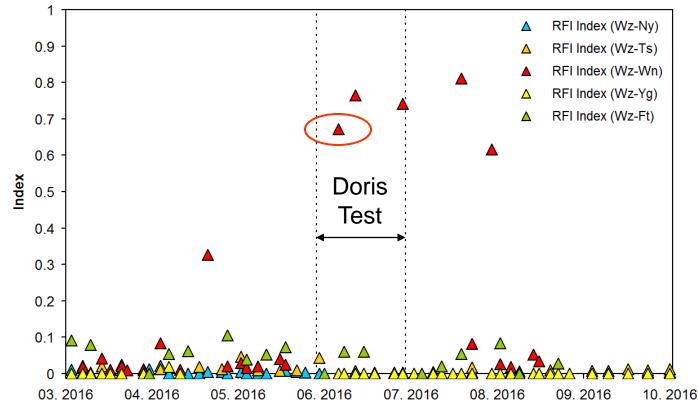
- Check DORIS and VLBI performance
- Site A3
 - 155 m to RTW
 - 215 m to TTW-1
 - 280 m to TTW-2
 - No direct line-of-sight
- Operation on demand
 - Beacon in stand-by when no satellite is visible

Panoramic view

Satellite reception

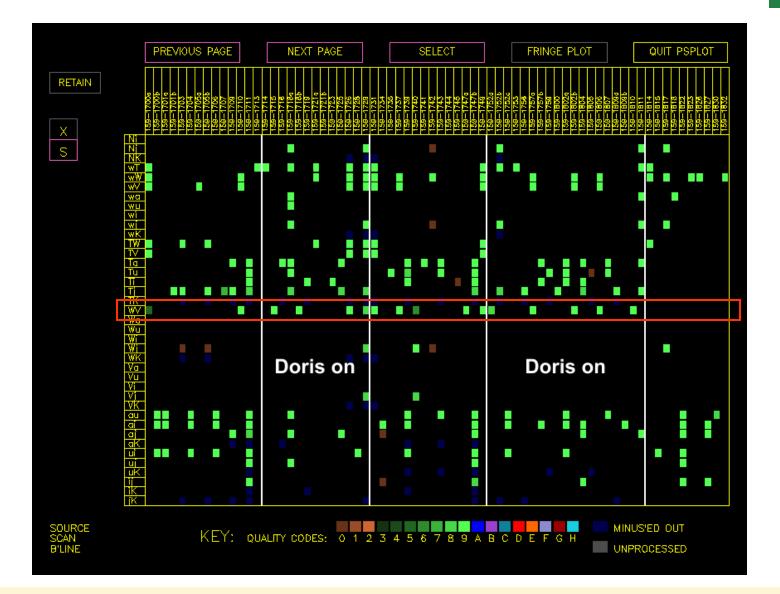

Visualisation géométrique de la réception pour la balise 232 du 01/06/2016 00:00 au 29/06/2016 08:18 pour tous les satellites

270 Programmées reçues • Programmées non reçues • Non programmées reçues Mesures valides • Mesures invalides 2GHz Mesures invalides 400MHz • Mesures invalides globales

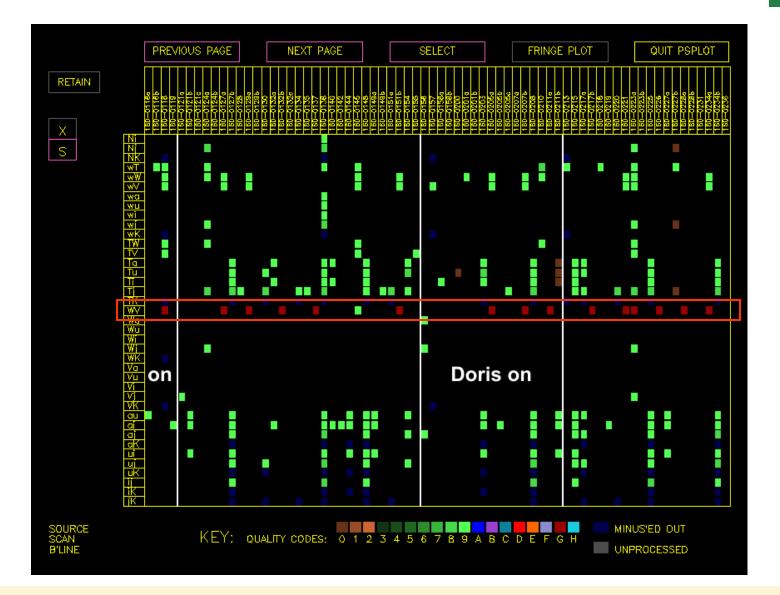


Mean MOE RMS

VLBI correlation results


- R1 and R4 experiments from March till Oct. 2016
- RFI index: relative frequency of "G codes"
- Problem on local baseline: common RFI

RFI Index



R1-Experiment from June 07-08, 2016 Correlation Quality Codes (1)

R1-Experiment from June 07-08, 2016 Correlation Quality Codes (2)

Final installation

Local Survey

After final installation

EXLL.

- Swetlana Mähler (BKG), Jean-Claude Poyard (IGN)
- 4 known reference pillars

Koordinaten nach der Ausgleichung							
Lfd. NR.	Punkt	Ч	x	z	dy Sv	dx Sx	dz Sz
NR.		[m]	[m]	[m]	-		[mm]
1	25 *	136.79467	230.84429	608.44808	0.11	-0.43	0.59
2	26 *	93.70182	181.97790	603.13150		0.26 -0.10	0.15
3	39 *	149.63319	161 33573	605 59414			0.12
					0.24	0.41	0.28
4	220	114.11101	194.01997	604.23514		-0.03 0.19	0.04 0.13
5	221	114.11100	194.01997	604.43514		-0.03 0.19	0.04
6	222	114.11020	194.02012	606.14313		0.02	0.03
7	1000	107.33650	197.26198	605.19033	0.10	-0.12	0.03
8	1220 *	142.38968	184.39470	613.70487	0.08		-0.43
9	2000	111.12511	184.18271	607.73540		0.27	0.18 -0.02
10	WEUC	114.11022	194.02011	606.65877	0.19		0.12
11	Red ring	114.10999	194 02003	606 65914		0.19	0.13
		111.10555	191.02000	000.00511		0.23	
PAN V4.15	17. Oktober 2016 13:26:24 Uhr				Seite:		16

Bundesamt für Kartographie und Geodäsie

- The 2 GHz DORIS signal may affect the VLBI S-band reception (2.1 2.4 GHz) by overloading or saturation of the LNAs
- The received power has its maximum in the direction of the DORIS antenna at low elevations (< 20°)
- The maximum gain lobe of the VLBI antenna must never point towards the DORIS antenna (LNA could be destroyed)
- A big distance between both antennas is good (> 400 m is sufficient)
- Obstacles between the antennas (hills, buildings, RF blocker) attenuate the signal up to ~ 20 dB
- Reflections at objects (fences, trees, buildings) strongly contribute to the total received power (RHCP ~ LHCP)
- VLBI correlation results: no effect on long baselines, RFI issues on the local baseline (WETTZELL-WETTZ13N) have been overcome
- DORIS @ Wettzell: a good compromise
 - VLBI: enough attenuation through distance and barrier
 - Operation on demand: 25% duty cycle, no effect on satellite reception
 - DORIS: elevation mask around 10°: acceptable
 - Co-location: excellent ties with VLBI, SLR, GNSS, SAR