

IDS workshop: Precise Orbit Modeling and Determination

New DORIS Doppler Parameterization Inferred from Phase Measurement Analyses

A. Couhert, F. Mercier

October 28, 2014

Lake Constance, Germany

DORIS Ground Antenna Phase Map

Cones

Phase Residuals Obtained Along a Specific Track

l cnes

Analysis of the Mean Signatures for a Beacon

Phase Residuals (without map)

cnes

Phase Residuals (with map)

Ccnes

Phase Residuals (with map and vertical position adjusted)

Cones

IDS workshop Lake Constance 2014, Couhert and Mercier

Stations Vertical Positioning Characteristics

6 stations which have the best Doppler residuals in the current IDS processing

	withou	it map	with map	
	10 degree	20 degree	10 degree	20 degree
YEMB	-7	0	21	16
ROVB	6	13	17	13
RIRB	-64	-57	-12	-15
MEUB	-32	-24	2	0
GRFB	6	14	16	13
CHAB	-45	-37	-8	-11

Estimated parameters: vertical position (orbit fixed), bias, drift, wet tropospheric delay per pass

The map as well as the elevation cut-off angle effects are clearly visible => several centimeter variations in the vertical positions, but the positioning results are more stable wit the map.

6 stations which have the best Doppler residuals in the current IDS processing

	10 degree		20 degree		Cycles
	phase	Doppler	phase	Doppler	removed
YEMB	-1	-9	16	4	18
ROVB	22	22	23	23	$5~{\rm et}~18$
RIRB	-49	-64	-11	-21	18
MEUB	-29	-40	-9	-11	18
GRFB	18	24	18	15	18
CHAB	-35	-43	-12	-19	18

Estimated parameters: vertical position (orbit fixed), bias, drift, wet tropospheric delay per pass

ROVB and GRFB show little sensitivity to Doppler, phase and elevation cut-off angle, contrary to RIRB.

RIRB Positioning Results (fixed orbits)

CN

es

Consequences on Orbit Determination (POD for altimetry)

- Orbit determination (current GDR-D parameterization, with or without map)
- Effect of the cut-off elevation angle (10 or 20 degree)
- Orbits with vertical position adjusted for each station
- External validation with SLR residuals
- Investigation on the "geocenter estimate" as seen by DORIS

DORIS-only "Phase-Corrected" Orbit Comparisons

Ccnes

High elevation (above 70 degree) SLR core network residuals on independent DORIS-only orbits

Solving for the vertical position of the DORIS beacons on average seems to reduce by ~2 mm RMS the radial component of the DORIS-only orbits.

Adjusted Vertical Positions for the DORIS Beacons

Vertical position biases estimated on well performing DORIS stations (elev. > 20 degree)

Odd Behaviors of Some Adjusted Vertical Positions

« Dynamical » approach

 A global translation vector for the network is determined simultaneously with the Jason-2 orbit (one per 10-day cycle).

 The time evolution of the estimated translation vector is well characterized by a simple annual sinusoid.

Estimation of the "Geocenter Motion" as Seen by DORIS

Conclusions

Map effects on positioning

- Adjusted vertical position is more stable.
- Dependency on cut-off elevation angle and phase or Doppler measurements needs to be understood.
- Map effects on orbit radial performances (small < 1 mm RMS)
 - Effect of adjusting vertical positions or frequency drift not negligible (~6 mm RMS)
 - + Estimated positions can differ significantly depending on the elevation limitation.
- Global translation network motion estimate
 - The reason for the odd behavior of the Z component estimates remains to be determined.
 - » Test if any improvement with other altimeter satellites (Saral, CryoSat-2, HY-2A).
 - Inclusion of SLR stations with DORIS+SLR orbits may reduce this instability.
 - Apply the same process with the GPS constellation (instead of the DORIS stations) and see if the gap in the North/South centering between DORIS-only and GPS-based orbits can be reduced.