Contributions of DORIS to ionosphere modeling

D. Dettmering ^{1,3)}, **M.** Schmidt ^{1,3)}, and **M.** Limberger ^{2,3)}

 ¹⁾ Deutsches Geodätisches Forschungsinstitut (DGFI)
 ²⁾ Technische Universität München (TUM)
 ³⁾ Centre of Geodetic Earth System Research (CGE) Munich, Germany email: dettmering@dgfi.badw.de

Space-geodetic observation techniques

- Terrestrial GNSS -
- Space-based GNSS (radio occultation, RO) —
- Satellite radar altimetry (RA) ——
- DORIS —
- VLBI, GRACE K-band, ...

New DORIS instruments DGXX RINEX 3 data

Phase measurements instead of Doppler measurement! Similar to GNSS, but:

• high ratio between the two frequencies

$f_1 = 2.03625 \text{ GHz}$	$\lambda_1 = 14.7$ cm	=> factor 5.1 (GPS: 1.3)
$f_2 = 0.40125 \text{ GHz}$	$\lambda_2 = 74.7 \text{ cm}$	

• higher order effects significant

Processing chain

DORIS data preprocessing

higher order ionospheric effect is neglected!

DORIS station KOLB – mission Jason-2

UNIVERSITÄT MÜNCHEN

STEC bias estimation

- Pseudo-range observations not usable for "ambiguity fixing"
- Knowledge of bias important for mapping from STEC to VTEC
- Ambiguity is adjusted for each pass using an external ionosphere model
 - Model: IGS GIM
 - Factor for height reduction to J2 orbit height (f = 0.925)
 - Mapping to STEC with MSLM (CODE)
- Only passes with max. elevation of at least 20°, new pass after data gap or cycle slip => 2...4 passes per day

DORIS STEC (DOY 225)

 offsets:
 -40.2 TECU
 -14.2 TECU
 -30.3 TECU

пп

UNIVERSITÄT MÜNCHEN

Ċ

DORIS STEC bias (per pass)

DORIS STEC bias

DORIS STEC bias depending on

- ➤ pass direction (asc/desc)
- mean local time
- absolute STEC (pass minimum)

Main reason:

First STEC value per pass is always set to ZERO

Differences DORIS_{shifted}-IGS

CONT08 time period (15 days) => 45 passes, 9185 observations (4380 asc / 4805 D)

MÜNCHEN

DORIS data preprocessing

DGFI Ionosphere model

Model approach:

- VTEC modeling with respect to a background model (IRI2007)
- 3-dimensional B-splines for latitude, longitude and time (level 3,3,5)
- variance component estimation for rel.weighting of different observation types

Area under investigation: Hawaii Time period: CONT08 (Aug. 15-29, 2008) Input data: VTEC up to 2000 km height Input observation types:

terrestrial GPS (5 stations), RO (COSMIC), RA (Jason-1, Jason-2) VLBI Envisat DORIS DORIS VTEC (asc + desc)

Reference:

Dettmering D. et al, 2011: Systematic differences between VTEC obtained by different space-geodetic techniques during CONT08. Journal of Geodesy 85(7), 443-451, doi 10.1007/s00190-011-0473-z

Variance Components

mean sigma for CONT08

DORIS for ionosphere modeling

UNIVERSITÄT MÜNCHEN

Accuracy of adjusted observations

- DORIS data standard deviation (mean) < 0.1 TECU</p>
- Too optimistic due to high correlation between consecutive measurements
- More accurate than GPS
- DORIS Envisat product less accurate and less homogeneous

VTEC model (August, 24 2008)

Estimated differences to IRI2007: up to 15 TECU

Model precision: ~ 1TECU (optimal data coverage) ... ~5 TECU (few or no data input)

Conclusions and Outlook

- DORIS can contribute significantly to ionosphere modeling
- High frequency factor ensure high sensitivity
- Data distribution promising (good global coverage, many missions)
- DGXX receivers provide measurements which are easy to handle more problems when using "old" iono-products (not successfull yet)
- Ambiguity fixing needs external information
- Higher order ionospheric effects need to be investigated in detail
- Variance components for DORIS VTEC are better than for other observation techniques used in the study
- Quality of DORIS VTEC is better for ascending passes than for descending passes

Future work:

- Investigate large differences between DORIS STEC and IGS GIM for lower elevations
- Extend model area and use more DORIS missions and ground beacons
- Use of DORIS for 4-dimensional modeling of electron density

