

Doris ground antennas Radio Frequency characterization

Cédric Tourain Based on Daniel Belot's Work and Report

2012 September 25th

• CONTEXT, MOTIVATION

- MEASUREMENT AND ANALYSIS REQUEST
- MEASUREMENT CAMPAIGN
- **RESULTS**
- UPCOMING ACTIVITIES

CONTEXT, MOTIVATION

 An issue was raised by several IDS users about a possible bias in the position of the phase center of the DORIS ground antennas

Recommendation from IDS Governing Board (Lisbonne 2010)

- The vertical offsets between Starec and Alcatel antennas must be looked at. There could be a correlation between the scale errors and the numbers of Alcatel antennas.
- Action to provide calibration results of Alcatel and Starec antennas

MEASUREMENT AND ANALYSIS REQUESTSAL

SERVICE

ALTIMETRI

Analysis requested to CNES Antenna Department

- 1 Characterize STAREC antenna considering phase center position defined by the manufacturer
 - + Gain pattern
 - Phase law
- 2 Compare this characterization with manufacturer's specifications

=> In case of inconsistency, determine the position of the phase center for which measured phase law corresponds to specifications

Determine variability of the phase center position on a set of 7 STAREC antennas

- » Type 52291 serial number : 50, 56, 128, 01
- » Type 1828-25 serial number : 140, 143, 144

MEASUREMENT AND ANALYSIS REQUEST Specification data

DORIS ground antenna : STAREC

- Specification document :
 - modeling of DORIS instrument (CO-SP-DO-OP-2460-CN)
 - Available on IDS site ftp://ftp.idsdoris.org/pub/ids/satellites/DORIS_instrument_modelling_1G_ envisat.pdf
- Total size : 974 mm
- Reference plan : P_{ref} Doris Reference plan
- H_{2GHz} : 2036.25MHz Phase center : 487mm / P_{ref}
- H_{400MHz}: 401.25MHz Phase center: 0mm / P_{ref}

SERVICE

PRECISE

ALTIMETRIE & LOCALISATION

SERVICE **MEASUREMENT AND ANALYSIS REQUEST**S f ALTIMETRIE LOCALISATION specification data PRECISE

&

dispersion authorized + 400 MHz : $\epsilon = \pm 4^{\circ}$

♦ 2GHz : ε =±2°

6

Doris ground antennas Radio Frequency characterization, September 2012

MEASUREMENT CAMPAIGN Measurements performed by the CNES Antenna Department

BASE COMPACTE DE MESURES D'ANTENNES

Objectifs : Connaitre et maitriser le rayonnement des antennes seules et sur structures

for more details, cf. backup slides

7 Doris ground antennas Radio Frequency characterization, September 2012

MEASUREMENT CAMPAIGN Measurement protocol

Antenna placed on measurement device

- Antenna aligned with the Z axis of the measurement frame
- Antenna rotates to cover elevation angle (θ) from -180° to 180°
- •4 measurement series (4 plans) ϕ = 0°, 45°, 90°, 135°

Coes

MEASUREMENT CAMPAIGN Measurement configuration (1/2)

- Several configurations exist on the network
- In order to quantify the impact of the configuration, each one has to be measured
 - C1 : Doris antenna alone
 - C2 : Doris antenna on small triangular interface
 - C3 : Doris antenna on small triangular interface + IGN disc
 - C4 : Doris antenna on large triangular interface

⇒Tests measurements have been performed on one antenna (n°56)
 ⇒Measurements performed for the 4 configurations

MEASUREMENT CAMPAIGN Measurement configuration (2/2)

Results :

C1 : reference position of phase center (antenna alone)

C2 : Phase center position shift -2mm

C3 : Phase center position shift -2mm

C4 : Phase center position shift -3mm

 \Rightarrow Impact of the interface under the accuracy specification for phase center position (± 5mm)

 \Rightarrow Impact of the interface in the measurement noise

Measurements performed in C1 configuration (antenna alone)

Significant for all configurations

RESULTS (7 STAREC Antennas)

From 2 measurement reports:

- DORIS Antennes sol : DCT/RF/AN 2011.0024572
- DORIS antennes 56, complément de mesure

Gain pattern

Black curve : specified gain law

Blue curves : gain measured on right hand polarized signal (useful signal)

• Red curves : gain measured on left hand polarized signal

 \Rightarrow Good consistency between measurement and specification for both 400MHz and 2GHz

 \Rightarrow Results equivalent for the 7 antennas

Phase law, phase center position measurement principle (1/2)

Considering the specified phase center position

measurements are performedcompared to specification

Phase law, phase center position measurement principle (2/2)

New position is taken into account

- Phase law is determined again
- compared to specification

• After several iterations, a measured phase center position can be estimated

Results 400MHz Channel (1/2)

Phase center position :

specified phase center position : 0mm / P_{ref}

- Measured phase center position : -7mm / P_{ref}
 7mm of discrepancies (0.01.2)
 - => 7mm of discrepancies (0.01λ)

(consistent results obtained on 7 antennas)

However :

discrepancies between results obtained with specified and measured phase center do not justify to change the specification

Results 400MHz Channel (2/2)

Phase law

- To stay in the ±4° dispersion, a new phase law is proposed :
 - Determined by adjustment on the 7 antennas measurements

Cones

Results 2GHz channel (1/2)

Phase center position :

 specified phase center position : 487mm / P_{ref}

Results 2GHz channel (2/2)

Phase law

- To approach the ±2° dispersion, a new phase law is proposed :
 - Determined by adjustment on the 7 antennas measurements

Cnes

DORIS STAREC antennas Conclusion

Measurement campaign performed by antenna dep. shows :

No variability of phase center position between antennas

- The specified 400Mhz phase center position does not need to be modified
 => H_{400MHz} = 0 mm / Doris reference plane
- The specified 2GHz phase center position should be modified

=> H_{2GHz} = 470 mm / Doris reference plane

For both channels, the measured phase law should be applied

NEXT

Before applying specification modification :

Analysis of the impact of those new values on IDS solutions needed:

• This work is on going.

Similar analysis on ALCATEL antennas if possible

Need to have a significant set of antennas
On going investigation to get functional antennas

THANK YOU

Backup slides

BASE COMPACTE DE MESURES D'ANTENNES

Simuler la distance satellite sol

Positionner l'antenne dans l'espace

Objectifs : Connaître et maîtriser le rayonnement des antennes seules et sur structures

Isoler l'antenne dans l'espace

Absorbants : -70 dB de réflectivité typique à 8 GHz.

> Positionneur : 7 degrés ► de liberté en rotation et translation. Capacité : 350 Kg maximum.

 Diagramme de rayonnement, directivité, gain, localisation centre de phase, temps de propagation de groupe.
 Performances système, surface équivalente radar.

Réflecteur parabolique : 5,3 m x 5,6 m, 48 tonnes. - Focale : 13 m.

Etat de surface : 25 µm RMS,
Zone tranquille maximale de 4 m x 4 m x 4 m.

Instrumentation : analyseurs de réseau Agilent et ABmillimètre, logiciels CNES/ SILICOM d'acquisition et post-traitement.

Simuler la liaison bord sol

15 sources primaires ► de 0,4 à 200 GHz.

Réaliser les mesures avec précision

Cnes