Time-variable gravity models

J.M. Lemoine ⁽¹⁾, S. Bruinsma ⁽¹⁾, P. Gégout ⁽²⁾, R. Biancale ⁽¹⁾, S. Bourgogne ⁽³⁾

- (1) CNES/GRGS, Toulouse, France
- (2) GET/UMR5563/OMP/GRGS, Toulouse, France
- (3) Géode&Cie, Toulouse, France

Data used

GRACE

- Launched in 2002
- 2 satellites separated by ~220 km
- Altitude: ~ 440 km, Quasi-polar orbit (89°)
- GPS + accelerometers + SLR + K-Band Ranging
- ${\scriptstyle \bullet}$ KBR accuracy: ~ 1 μm , 0.1 $\mu m/s$

GOCE

- Launched March 17, 2009 Passed on November 11, 2013
- Altitude: ~ 260 km, Inclination: 96.7°
- GPS + SLR + gradiometer (0.5 m arm length)
- Gradiometer accuracy: 4 mE at 1 Hz (\rightarrow 4 10⁻¹² m/s²/m)

LAGEOS-1 & 2, Starlette and Stella

- Passive SLR satellites
- Altitudes: 5900 km and 800 km
- Inclinations: 110° / 53° / 50° / 99°

METHODOLOGICAL APPROACH

Unconstrained Choleski inversion up to a certain degree cutoff:
CSR: 60, then 96, JPL and GFZ: 90

METHODOLOGICAL APPROACH

- Constrained Choleski inversion: GRGS-RL02 (degree max: 50)
- Truncated SVD solution: GRGS-RL03 (degree max: 80)

A posteriori filtering... is **NOT** necessary

- Mascons: GSFC Computation of the direct effect of point masses on the KBRR measurements
- "Integral of Energy" technique: Ramillien & Seoane Based on the equivalence between kinetic and potential energy. The velocity residuals (KBRR) are taken as the opposite of the potential perturbations.

Truncated SVD solution: GRGS-RL03 (degree max: 80)

Example where the first 4600 (upon 6400) Eigen values are kept (i.e. the first 4600 linear combinations of parameters are solved)

Geoid height formal error (m)

TIME SAMPLING

(all groups use dealiasing products for the atmospheric pressure and ocean response)

• Monthly: CSR, JPL, GFZ, GRGS-RL03

Annette Eicker

- 10-days: GRGS-RL02
- 1-day: BONN

Using a Kalman Filter scheme

GRACE Conference Canberra

GOCE geoid height differences: DIR-R4 vs. EGM2008 (max d/o 240)

COCS

From Christoph Förste (2013)

GPS L1 and L2

Mean Models

24 and 32 GHz Crosslink –

> S-Band Uplink/ Downlink

-

Poker Flat

Spitzbergen

Science Data System

Neustrelitz 🔏 Weilheim 🧔

Some high resolution gravity field models include a time-variable part, which tends to be more and more complex...

Mean models: "bias and slope" vs. "piece-wise-linear" modelling

Problem of the extrapolation outside of the GRACE era

- 1. Periodic components: can probably be safely extrapolated
- 2. Drifts:
 - a) Extrapolation of the drifts of the first and last years \rightarrow very dangerous !
 - b) Using for extrapolation the mean drift over the GRACE era \rightarrow why not ?
 - c) Setting the drifts to 0 outside of the GRACE era \rightarrow most conservative option

EIGEN-6S2 (extended.v2) (ITRF2014 processing) includes:

- One bias and one slope / year (continuous PWL except for "breaks")
- > 3 breaks corresponding to the last 3 major earthquakes
- Two mean annual and semi-annual components (sine and cosine) over the full time span
- Zero-slope extrapolation
- \rightarrow ~ 108000 parameters for 12 years and degree max = 80

EIGEN-GRGS.RL03-v2.MEAN-FIELD (GDR-E standards) includes:

- One bias and one slope / year (continuous PWL except for "breaks")
- 3 breaks corresponding to the last 3 major earthquakes
- Two annual and semi-annual components (sine and cosine) / year
- Zero-slope extrapolation
- \rightarrow ~ 416000 parameters for 12 years and degree max = 80

Thank you for your attention

