

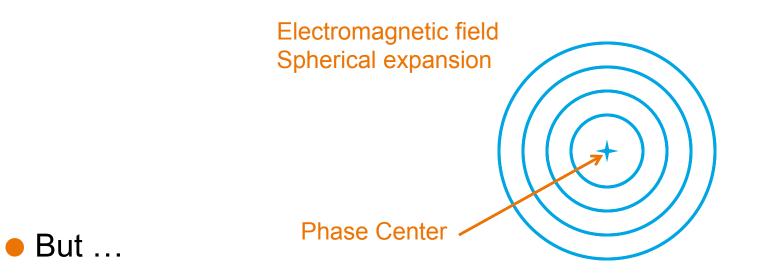
Doris ground antennas Radio Frequency characterization Latest analyses

Cédric Tourain, Albert Auriol

2013 April 4th

•PHASE CENTER DEFINITION

- ANALYSIS HISTORY
- NEW APPROACH
- SYNTHESIS
- UPCOMING ACTIVITIES
- RECOMMENDATION FOR ITRF 2013



PHASE CENTER DEFINITION (1)

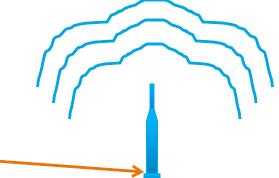
The Antenna phase center is

a virtual point

theoretically defined as the center of the iso-phase sphere

SERVICE

Altimetrie Localisation Precise

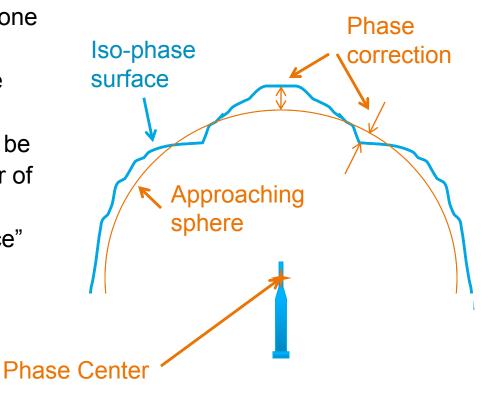

PHASE CENTER DEFINITION (2)

The real iso-phase surface of the Antenna is

- not a sphere
- but a kind of potato

Electromagnetic field Quasi Spherical expansion

Real Antenna

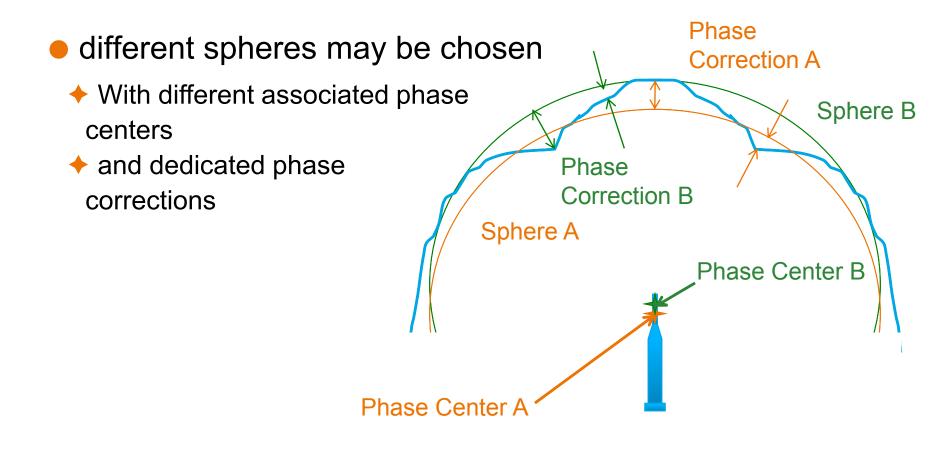

SERVICE

ALTIMETRIE LOCALISATION PRECISE

PHASE CENTER DEFINITION (3)

The potato surface may be approached by a sphere

- which is generally the closest one of the potato surface
- at least in a defined part of the useful coverage
- The center of this sphere may be considered as the phase center of the antenna
- for each direction, the "distance" between the potato and the sphere defines the "phase correction" associated to the phase center



SERVICE

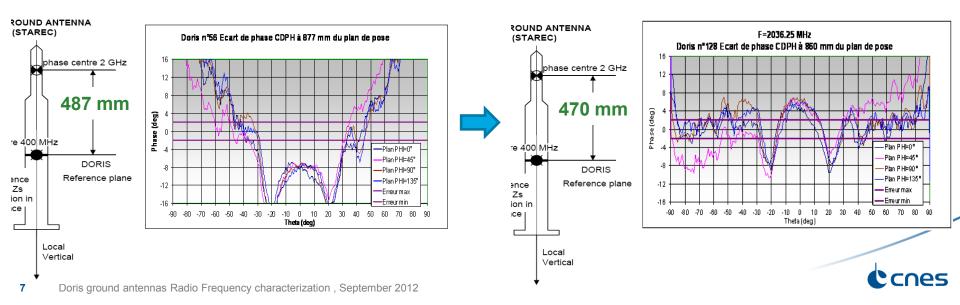
Altimetrie Localisation

PHASE CENTER DEFINITION (4)

SERVICE

ALTIMETRIE LOCALISATION PRECISE

ANALYSIS HISTORY (2GHz Phase law)


2011-2012 Analysis requested to CNES Antenna Department

Determine the phase center position that makes phase law fits with the specification

Results

 To have the best consistency between measured and specified phase law, a shift of 17mm of the phase center position is required

A new phase law can be taken into account to improve this consistency

ANALYSIS HISTORY (2GHz Phase law)

2013 : analysis complement

- 17 mm is a strong shift
- Some concerns were raised internally with respect to this result
- To go further, antennas have been dismantled, and measurements have been performed on the 2Ghz hardware

• result :

Antenna number 01 differs from all the others:

The base of the 2GHz part is about 1cm higher from the others.

SERVICE

ALTIMETRIE & LOCALISATION

ANALYSIS HISTORY (2GHz Phase law)

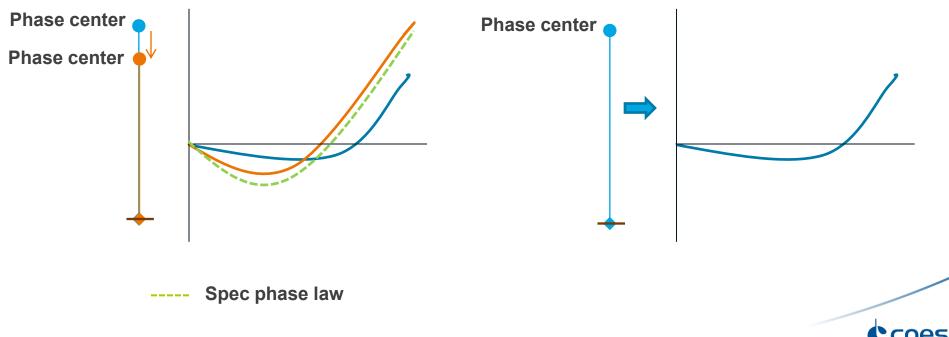
SERVICE

ALTIMETRI

Reminder :

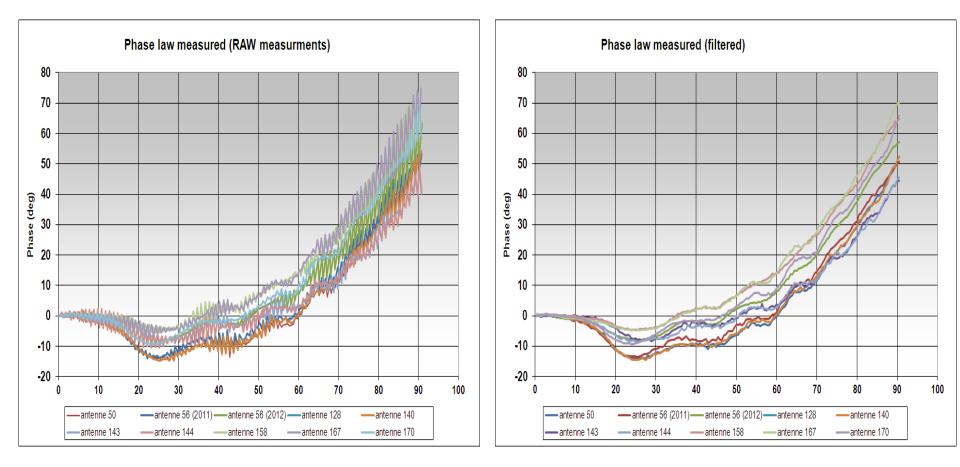
Antenna number 01 is the prototype of the Starec antenna

- » It has never been on the network
- all the other antennas analyzed are series antenna
 - » They were on the network


Note :

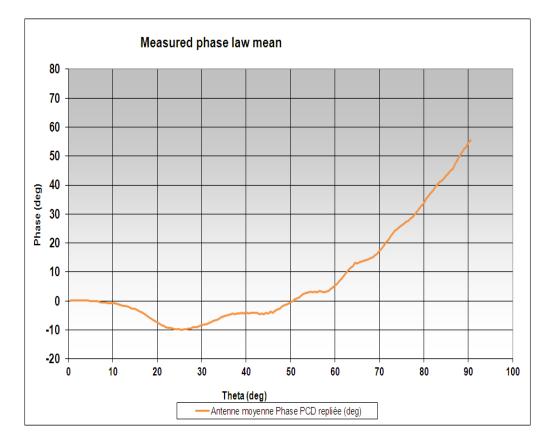
- There is a shift of about 1cm between the prototype and series antennas
- The phase law and the phase center position specified by the manufacturer have been determined on the prototype antenna
- ⇒ If we try to fit to the specified phase law, we will have a shift of the phase center position.
- \Rightarrow If we keep the specified phase center position, we will find a different phase law.

New characterization protocol


Goal :

- The need is to characterize series antennas
- That means give a couple : Phase center position phase law
- Instead of shifting the phase center position to fit a given phase law
- +We keep the phase center position fixed (487mm) and we determine the phase law

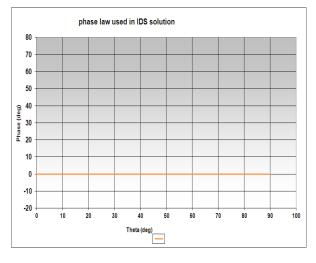
Phase law measured on the set of series antennas


Measurements performed on 9 series antennas

COes

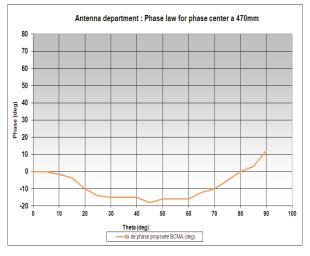
Mean phase law measured on the set of series antennas

- Meaning the measurements performed
- We obtain a phase law for a phase center at 487mm


⇒Results to be consolidated

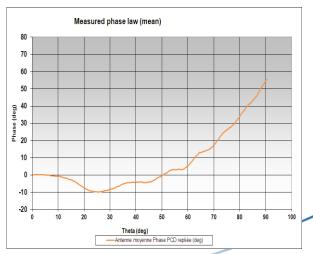
Synthesis (1/2)

• 3 characterizations are available/used


IDS characterization : C_IDS

- Phase center position : 487 mm
- + Phase law :

2011 antenna department characterization : C_ant_1:


- Phase center position : 470 mm
- Phase law :

Latest characterization TBC : C_ant_2:

Phase center position : 487 mm

Phase law :

cnes

In terms of RF Characterization:

The C_ant_1 and C_ant_2 are equivalent : we describe the same antenna.
> C_ant_1 = C_ant_2

First investigations seems to show :

For C_IDS, the two mistakes done:

- » on the position of the phase center (the one from the prototype)
- » Not taking into account the phase law

Compensate each other and the impact is very low

+=> C_IDS ≈ C_ant_dep1

Still to be consolidated

NEXT

Perform accurate physical measurements on antenna hardware
 to consolidate the consistency of series antennas

Perform a new measurement campaign on the same antennas
 to evaluate the precision and repeatability of measurements

Consolidate the phase law for C_ant_2

• Try to explain why C_IDS seems to be \approx C_ant_1.

Doris team recommends to test the characterization C_ant_2

+In case of better results, use this characterization.

Otherwise, continue to use the C_IDS

THANK YOU

Backup slides

BASE COMPACTE DE MESURES D'ANTENNES

Simuler la distance satellite sol

Positionner l'antenne dans l'espace

Objectifs : Connaître et maîtriser le rayonnement des antennes seules et sur structures

Isoler l'antenne dans l'espace

Absorbants : -70 dB de réflectivité typique à 8 GHz.

> Positionneur : 7 degrés ► de liberté en rotation et translation. Capacité : 350 Kg maximum.

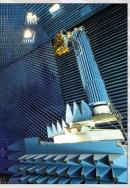


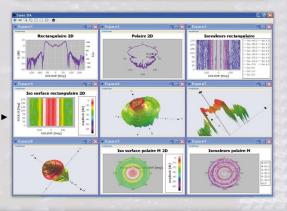
 Diagramme de rayonnement, directivité, gain, localisation centre de phase, temps de propagation de groupe.
 Performances système, surface équivalente radar.

Réflecteur parabolique : 5,3 m x 5,6 m, 48 tonnes. - Focale : 13 m.

Etat de surface : 25 µm RMS,
Zone tranquille maximale de 4 m x 4 m x 4 m.

15 sources primaires

de 0,4 à 200 GHz.


Instrumentation : analyseurs de réseau Agilent et ABmillimètre, logiciels CNES/ SILICOM d'acquisition et post-traitement.

Simuler la liaison bord sol

Cnes

Réaliser les mesures avec précision

